## Electronic Supplementary Material (ESI) for Materials Horizons.

Superior energy storage properties in SrTiO<sub>3</sub> - based dielectric ceramics through all-scale hierarchical architecture

Chengyang Zuo<sup>a, b</sup>, Jialing Xu<sup>b</sup>, Shilin Yang<sup>b</sup>, Zhiqin Cao<sup>a</sup>, Hongtao Yu<sup>b</sup>, Jingsong Liu<sup>b</sup>, Xianhua Wei <sup>b,\*</sup>

<sup>a</sup>College of Vanadiun and Titanium, Pan Zhihua University, Pan Zhihua 617000, P. R.

China

<sup>b</sup>State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China

\* Corresponding author.

Email address: weixianhua@swust.edu.cn (X. H. Wei).

## Characterization, electrical measurement and numerical simulation

The crystalline structures of powders and ceramics were analyzed by an X-ray diffraction (XRD, X Pert pro, PANalytical B.V.) with Cu K $\alpha$  radiation. The microscopic morphologies of samples were observed by a transmission electron microscopy (TEM, Talos F200X, FEI) and a high-resolution field emission scanning electron microscope (SEM, SU8020, Hitachi). The morphologies of domain structure were observed by a piezoresponse force microscopy (PFM, Oxford, MFP-3D infinity). The UV-visible (UV-vis) absorption spectrum was meticulously examined using a UV-vis spectrophotometer (UV-3600, Shimadu). The HRMS-900 system and DMS-2000 (Partulab) were used to measure temperature dependent direct current (DC) conductivity and dielectric parameters, respectively. For determining the DC  $E_b$ , we utilized a withstand voltage test system (RK2671AM). The P-E loops were tested by a ferroelectric analyzer (TF 3000) to determine the key energy storage parameters. The charge-discharge curves were obtained using a pulsed charge-discharge system (CFD-003, Tongguo technology). For those performance measurements, we carefully prepared the ceramics to have a controlled thickness ranging from 0.03 to 0.10 mm. Additionally, we determined the Vickers hardness of the ceramic using a Vickers hardness tester (MH-500). This involved applying a precisely controlled load of 4.9033 N for a time duration of 15 s.

To compare the effect of microstructure on breakdown strength of ceramics, a finite element software (COMSOL) was used to computationally simulate the spatial distribution of electric potential and local electric fields. A rectangular initial geometry with a total size of 10.24 % 6.95  $\mu$ m<sup>2</sup> was constructed for simulation, in which the spatial distributions of grains and grain boundaries were modeled according to the cross-sectional SEM images. When an electric field of 170 kV/cm was externally applied to the upper and lower sides of the ceramic, the distributions of those electrical parameters were calculated based on the electrostatic balance equation.



**Fig. S1** XRD patterns of (1-*x*)SBT-*x*BNZT powders.



**Fig. S2** Low magnification SEM image of x = 0.20 ceramic.

|         | Spectrum 1 |         |         | Spectrum 2 |         |
|---------|------------|---------|---------|------------|---------|
| Element | Weight%    | Atomic% | Element | Weight%    | Atomic% |
| O K     | 26.14      | 63.26   | O K     | 21.36      | 66.38   |
| Na K    | 1.29       | 2.18    | Na K    | 0.03       | 0.08    |
| Ti K    | 19.35      | 15.64   | Ti K    | 11.27      | 11.69   |
| Sr L    | 28.17      | 12.45   | Sr L    | 12.99      | 7.37    |
| Zr L    | 7.66       | 3.25    | Zr L    | 5.03       | 2.74    |
| Bi M    | 17.39      | 3.22    | Bi M    | 49.31      | 11.73   |
| Totals  | 100%       |         | Totals  | 100%       |         |

**Table S1** The distribution of elements in spectrum 1 and 2.



**Fig. S3** Thermally etched surface SEM images of (a) x = 0.05, (b) x = 0.15, and (c) x = 0.20; (d) TEM image of x = 0.10 ceramic powders.



Fig. S4 UV-vis absorption spectra.



Fig. S5 (a-c) Temperature dependence of  $\varepsilon_r$  and  $\tan \delta$  of (1-x)SBT-*x*BNZT (x = 0.05, 0.15, 0.20) ceramics with various frequencies; (d) Plots of  $\ln(1/\varepsilon_r - 1/\varepsilon_m)$  versus  $\ln(\text{T-T}_m)$  at 1 MHz for (1-x)SBT-*x*BNZT ceramics.



Fig. S6 Stability of energy storage of x = 0.10 ceramics: (a, c, e) Unipolar *P-E* loops at different temperatures, frequencies, and cycle numbers; The corresponding  $W_{t}$ ,  $W_{rec}$  and  $\eta$  are concluded in (b), (d) and (f).



**Fig. S7** The patterns of Vickers indentations and cracks of (1-x)SBT-*x*BNZT (x = 0.05, 0.15, 0.20) ceramics.

| Number | Load (N) | $d_I(\mu m)$ | $d_2(\mu m)$ | $d_{ave}(\mu m)$ | $H_v(GPa)$  |
|--------|----------|--------------|--------------|------------------|-------------|
| 1      | 4.9033   | 33.11        | 33.43        | 33.27            | 8.21        |
| 2      | 4.9033   | 34.22        | 32.56        | 33.39            | 8.15        |
| 3      | 4.9033   | 33.22        | 34.20        | 33.71            | 7.99        |
|        |          |              |              |                  | Average:8.1 |
|        |          |              |              |                  | 2           |

**Table S2** The parameters of Vickers hardness test of the x = 0.05 ceramic.

**Table S3** The parameters of Vickers hardness test of the x = 0.10 ceramic.

| Number                                                                             | Load (N) | $d_I(\mu m)$ | $d_2(\mu m)$ | $d_{ave}(\mu m)$ | $H_v(\text{GPa})$ |
|------------------------------------------------------------------------------------|----------|--------------|--------------|------------------|-------------------|
| 1                                                                                  | 4.9033   | 32.55        | 33.19        | 32.87            | 8.41              |
| 2                                                                                  | 4.9033   | 33.03        | 33.73        | 33.38            | 8.16              |
| 3                                                                                  | 4.9033   | 33.22        | 33.66        | 33.44            | 8.13              |
|                                                                                    |          |              |              |                  | Average:8.2       |
|                                                                                    |          |              |              |                  | 3                 |
| <b>Table S4</b> The parameters of Vickers hardness test of the $x = 0.15$ ceramic. |          |              |              |                  |                   |
| Number                                                                             | Load (N) | $d_I(\mu m)$ | $d_2(\mu m)$ | $d_{ave}(\mu m)$ | $H_v(GPa)$        |
| 1                                                                                  | 4.9033   | 36.82        | 38.34        | 37.58            | 6.43              |
| 2                                                                                  | 4.9033   | 37.99        | 37.65        | 37.82            | 6.35              |
| 3                                                                                  | 4.9033   | 39.33        | 38.19        | 38.76            | 6.05              |
|                                                                                    |          |              |              |                  | Average:6.2       |
|                                                                                    |          |              |              |                  | 8                 |

| Number | Load (N) | $d_1(\mu m)$ | $d_2(\mu m)$ | $d_{ave}(\mu m)$ | $H_v(\text{GPa})$ |
|--------|----------|--------------|--------------|------------------|-------------------|
| 1      | 4.9033   | 36.85        | 35.85        | 36.35            | 6.87              |
| 2      | 4.9033   | 35.77        | 37.03        | 36.40            | 6.86              |
| 3      | 4.9033   | 37.55        | 35.67        | 36.61            | 6.78              |
|        |          |              |              |                  | Average:6.8       |
|        |          |              |              |                  | 4                 |