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Note S1. Fabrication of the flexible sensing layer

The fabrication process of the sensing layer flexible thermal film involves several steps. First, the 

electrodes and wires are printed on a polyimide substrate (DuPont Pyralux AP8525R) using a flexible 

printed circuit (FPC) technique. Next, a photoresist is sprayed onto the printed substrate and patterned by 

photolithography. Then, a film of Cr/Pt (35 nm/100 nm) is deposited continuously by magnetron sputtering 

and patterned by the lift-off process. The sensors are then annealed in a vacuum furnace at 200°C for 2 

hours and cleaned with absolute ethanol and deionised water. Finally, a parylene layer (2 µm) is applied to 

the sensor using chemical vapour deposition (PDS 2010 Labcoter 2) as an encapsulation. This process 

results in a flexible thermal film that can measure pressure pulse signals and body surface temperature 

simultaneously. The fabrication of the interface sensor is shown in the figure below.
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Note S2. Fabrication of the porous silver-particle reinforced PDMS

To prepare the porous PDMS material, a cross-linked PDMS solution (Dow Corning Sylgard 184, 

10:1 weight ratio of alkali to cross-linker) was used for the substrate, which was doped with silver 

nanoparticles at a volume ratio of 2%. After mixing well, a calculated volume fraction of citric acid 

monohydrate particles is added and stirred well to form a semi-solid mixture. By pouring the mixture into 

an acrylic sheet mould, heating it in an oven at 80°C for 2.5h and peeling off the mould after solidification, 

the PDMS is made in square form. The material is placed in an ultrasonic cleaning oven and cleaned with 

anhydrous ethanol for 1min, followed by a 24h soak in anhydrous ethanol, the surface is washed with water 

and then dried in an oven at 45°C for 20min to obtain the final PDMS composite pizeo-thermic material 

for use. The fabrication of the porous silver-particle reinforced PDMS is shown in the figure below.
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Note S3. The principle of temperature compensation by the CTD scheme

As shown in the figure below, the reasonable resistor configuration of the Wheatstone bridge in the CTD 

(Constant Temperature Difference) circuit enables effective temperature compensation and decoupling of 

the bimodal measurements, supporting independent measurements for pressure/temperature or 

proximity/temperature.

When the Wheatstone bridge is balanced, the relationship of resistors within the bridge can be expressed 

as follows:

𝑅𝑎 × (𝑅𝑎𝑑 + 𝑅𝑐) =  𝑅𝑏 × 𝑅ℎ (1-1)

Set the resistance ratio of  and  as:𝑅𝑎 𝑅𝑏

𝑅𝑎

𝑅𝑏
=

𝑅ℎ0

𝑅𝑐0
(1-2)

The temperature coefficient resistances (TCR) of the hot and cold films are approximately equal and 

are denoted as  and , respectively.  and  are the resistances of hot film and cold film at . T 𝛼ℎ 𝛼𝑐 𝑅ℎ0 𝑅𝑐0 0 𝑜𝐶

is the ambient temperature,  is the temperature difference between the hot-film and the environment. Δ𝑇

Bringing in the TCRs of the hot film and the cold film, Equation (1-1) can be further derived as follows:

𝑅𝑎 × [𝑅𝑎𝑑 + 𝑅𝑐0(1 + 𝛼𝑐𝑇)] =  𝑅𝑏 × [𝑅ℎ0(1 + 𝛼ℎ𝑇 + 𝛼ℎΔ𝑇)] (1-3)

From Equations (1-1), (1-2), and (1-3), the resistance configuration of the CTD circuit can be derived 

as follow:

{ 𝑅𝑎

𝑅𝑏
=

𝑅ℎ0

𝑅𝑐0

Δ𝑇 =
𝑅𝑎𝑑

𝑅𝑐0𝛼𝑐
� (1-4)
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Equation (1-4) shows that the temperature difference is independent of the ambient temperature. 

Therefore, the output voltage Utop is independent of the ambient temperature.
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Note S4. The pressure sensing performance of pulse sensor

The pulse sensor is tested by using a force gauge (Sundoo SH-5, 0.01N resolution). The pressure stimulus 

is applied by using a mechanized z-axis stage (Handpi HLD) with the force gauge. The pulse sensor 

responds to the pressure stimuli as shown in the following figure, indicating a measuring range of 0-228kPa.

The pressure detection limit is tested by placing a tiny plastic cap nut on the sensor. The following 

figure shows a weight of 4 Pa is applied on the sensor. The response of the pulse sensor indicates a low 

detection limit of 4 Pa.

The dynamic response is tested by instantaneously loading a pressure onto the sensor. The response 

of the pulse sensor is shown in the following figure, indicating a response time of 88ms.
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Cyclic pressure loading experiment is conducted by alternately loading the pressure stimuli between 

10 and 50 kPa for more than 1000 times. The sensor responses are monitored and shown in the following 

figure, indicating good durability and stability.
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Note S5. The principle of temperature measurement

In our sensor design, the hot and cold films are connected to the two ends of a Wheatstone bridge 

to realize the Constant Temperature Difference (CTD) mode with the help of a CTD circuit. Since the 

resistance of the cold film is much larger than that of the hot film, the Joule heat of the cold film is 

negligible according to the CTD circuit. Therefore, the temperature of the cold film is approximately 

equal to the ambient temperature. As defined in Supplementary Note S2, is the TCR of cold-film, 𝛼𝑐 

is the resistances of cold-film at ,  is the ambient temperature. The cold film resistance with 𝑅𝑐0 0 𝑜𝐶 𝑇

respect to the ambient temperature can be expressed as follows:

𝑅𝑐 = 𝑅𝑐0(1 + 𝛼𝑐𝑇) (2-1)

In the Wheatstone bridge, the voltage ratio of cold-film can be calculated by:

𝑂𝑢𝑡𝑝𝑢𝑡_𝑇 =
𝑈 +

𝑈𝑡𝑜𝑝
=

𝑅𝑐 + 𝑅𝑎𝑑

𝑅𝑐 + 𝑅𝑎𝑑 + 𝑅𝑏
(2-2)

Combining Equation (2-1) and (2-2), there is a linear relationship between ambient temperature  𝑇

and temperature signal 𝑂𝑢𝑡𝑝𝑢𝑡_𝑇

𝑂𝑢𝑡𝑝𝑢𝑡_𝑇 =
𝑅𝑐0

𝑅𝑏
𝛼𝑐𝑇 +

𝑅𝑎𝑑 + 𝑅𝑐0

𝑅𝑏
(2-3)
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Note S6. Device design

The wearable device is operated by a signal acquisition and transmission circuit, including a sensor 

conditioning circuit and a digital circuit, where the sensor signals are acquired by a microcontroller unit 

(MCU: STM32L452) via an analog-to-digital converter (ADS124S06) and wirelessly transmitted to an 

external terminal (e.g. PC or cellphone) via a low-power Bluetooth module (DA14580). The sampling 

frequency of the sensor is 125 Hz. In addition, a non-essential PPG sensor with a sampling frequency of 

1000 Hz was used to monitor the pulse signal at the fingertip and was used as a comparison at follow-up. 

The PPG sensor is a reflectance type (MAX30101, Maxim) with a photodetector and a 525 nm (green) 

LED. The device case is made of resin and 3D printed. A lithium-ion battery is used for the power supply 

and can be charged through the Micro-B USB connector plug.
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Note S7. The detailed process of pulse signal processing

First, we remove the outliers of the pulse signal and high frequency noise. The outliers of the original 

pulse signal are detected and replaced with linearization by a window of length 20 points and the  3𝜎

principle. Then, a window of length 3 is applied to smooth the pulse signal to obtain a clear pulse waveform. 

Next, a Savitzky-Golay filter with a window of the signal length and polynomial order = 4 is applied to 

obtain the baseline. The baseline is subtracted from the clear pulse waveform and the average of the baseline 

is added to obtain the pulse waveform with the baseline removed.
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Note S8. Definition of the features extracted from the pulse signal

The 33 features extracted from pulse signal and subject information are defined as the following table. 

Pm is the mean value of the pulse wave signal, Pd is the mean value of two valleys, and Ps is the peak 

value. K value in a cardiac cycle is calculated by (Pm-Pd)/(Ps-Pd). The bigger the K value is, the smoother 

the waveform is.

Type of parameter Featues Definitions

Pd Value of minimum pressure

Ps Value of percussion wave

Pdn Value of dicrotic notch

Pdw Value of dicrotic wave

Ppp Peak-to-peak value of the pulse wave signal

PIR Ratio of pulse signal peak to foot amplitude

PR Pulse rate

T Cardiac period

ST Systolic time

T-AE Time span between point A and point E

T-BE Time span between point B and point E

T-CF Time span between point C and point F

RtTP Time ratio of TCD to cardiac period

K Pulse wave signal characteristic value

K1 Systolic characteristic value

K2 Diastolic characteristic value

AS Ascending slope of pulse signal

K1/K Ratio of K1 to K

K2/K Ratio of K2 to K

Pulse waveform
features

dPW_PAm Peak amplitude of first-order difference of pulse signals



12

dPW_TW Time wide of first-order difference of pulse signals

dPW_AS Ascending slope of first-order difference of pulse signals

dPW_DS Descending slope of first-order difference of pulse signals

Temp Skin Temperature

Pm Baseline value of the pulse wave signal

Fre1 Amplitude at the pulse rate

Fre2 Amplitude at the 1st harmonics

Wearing pressure 
and skin temperature 

features

Fre1-T Amplitude of the temperature signal at the 1st harmonics

Age Height of the subject

Height Age of the subject

Weight Weight of the subject

Gender Gender of the subject

Physical
characteristics

BMI Body mass index of the subject
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Note S9. The optimization process of the MLP neural network

In the optimization process of the MLP neural network, pulse waveform features, wearing pressure, and 

skin temperature features, and the subject’s physical characteristics are used to estimate SBP. To avoid 

overfitting, a penalty term (L2 regularization) is added to the loss function to perform weight attenuation 

and limit the sum of squares of the neuron weights. If the error of the validation set does not decrease after 

several rounds of training, the training is stopped, and the trained model is used as the model of the sensor. 

The number of layers, the number of neurons and Dropout of the hidden layer of the neural network are 

optimized, and the results are shown in the table below. When the number of hidden layers is 1, with the 

increase of the number of neurons, the absolute value of the average error of systolic blood pressure and 

the standard deviation of the error are reduced. With the increase of the number of neurons, the average 

error and standard deviation gradually decrease and tend to be stable. The estimation accuracy of the double 

hidden layer structure is improved compared to the single hidden layer structure. Therefore, the best MLP 

structure is a double hidden layer structure, the first hidden layer is 80 neurons, and the second hidden layer 

is 20 neurons. A Dropout of 10% is applied to each hidden layer. This neural network will be used later to 

estimate systolic and diastolic blood pressure.

neural network 
structure* error (ME±SD) neural network 

structure error (ME±SD)

12 0.62 ± 6.75 30+30 0.65 ± 6.08

20 0.16 ± 6.21 30(0.1)+30(0.1) 0.42 ± 6.04

30 -0.08 ± 5.95 40(0.1)+40(0.1) 0.22 ± 5.82

50 -0.16 ± 5.90 50(0.1)+50(0.1) 0.49 ± 5.78

80 -0.14 ± 5.89 80(0.1)+50(0.1) -0.70 ± 5.67

100 0.33 ± 5.87 80(0.1)+20(0.1) -0.03 ± 5.56

100 (0.1) 0.62 ± 5.83 80(0.2)+20(0.2) 0.70 ± 5.76
*：The number is the number of neurons in the hidden layer, and the number in parentheses is the Dropout ratio
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Note S10. Details of blood pressure measurement

There are a total of 18 subjects, 13 males and 5 females. The measurement time of each subject is 

about 1 minute each time, and the measurement interval is at least 3 minutes. Each person measures at least 

10times, and the measurement is divided into at least 2 days. The subjects remove and re-wear the our 

wristwatch device between different measurements to validate the feasibility and generalization across 

different wears. There are 260 measurements in total. When measuring, the subject wears the device on the 

left wrist and wears a commercial cuff-based blood pressure monitor (OMRON J751) on the upper arm of 

the right hand for simultaneous measurement. The blood pressure measured by the cuff-based blood 

pressure monitor is used as a ground truth blood pressure. The data were distributed as follows.
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Note S11. Performance metrics

Mean error (ME) is the average of the errors of all estimates and reference values. Let there be a total 

of N pairs of blood pressure estimates  and blood pressure reference values , the mean error is 𝐵𝑃𝑒𝑠𝑡 𝐵𝑃𝑟𝑒𝑓

defined as:

𝑀𝐸 =
1
𝑁

𝑁

∑
𝑖 = 1

(𝐵𝑃𝑟𝑒𝑓,𝑖 ‒ 𝐵𝑃𝑒𝑠𝑡,𝑖)

The standard deviation (SD) can be a measure of the dispersion of a set of data and is defined as:

𝑆𝐷 =
1
𝑁

𝑁

∑
𝑖 = 1

(𝐵𝑃𝑟𝑒𝑓,𝑖 ‒ 𝐵𝑃𝑒𝑠𝑡,𝑖 ‒ 𝑀𝐸)2

The Mean Absolute Error (MAE) represents the mean absolute error between the predicted and 

observed values and is defined as:

𝑀𝐴𝐸 =
1
𝑁

𝑁

∑
𝑖 = 1

|𝐵𝑃𝑟𝑒𝑓,𝑖 ‒ 𝐵𝑃𝑒𝑠𝑡,𝑖|

The Pearson correlation coefficient is used to measure the linear correlation between two sets of 

data and in this paper it is calculated as：

𝑟 =

𝑁

∑
𝑖 = 1

(𝐵𝑃𝑒𝑠𝑡,𝑖 ‒ ̅𝐵𝑃𝑒𝑠𝑡)(𝐵𝑃𝑒𝑠𝑡,𝑖 ‒ ̅𝐵𝑃𝑒𝑠𝑡)

𝑁

∑
𝑖 = 1

(𝐵𝑃𝑒𝑠𝑡,𝑖 ‒ ̅𝐵𝑃𝑒𝑠𝑡)2
𝑁

∑
𝑖 = 1

(𝐵𝑃𝑟𝑒𝑓,𝑖 ‒ ̅𝐵𝑃𝑟𝑒𝑓)2
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Note S12. Details of the neural network for PWA

The neural network framework of the PWA (PP-net) refers to the framework proposed in the related 

literature1. It is shown in the figure below. 

The PWA network takes backlit sphygmomanometer (PPG) waveforms as inputs and provides either 

systolic blood pressure (SBP) or diastolic blood pressure (DBP) as outputs. It is a hybrid architecture and 

combines Convolutional Neural Network (CNN), Long Short Term Memory (LSTM) and Dense. Each of 

the two 1D convolutional layers consists of a set of 20 learnable filters of size 9 × 1. Subsequently, the 

spatial dimensions (width, height) are pooled by 4 × 1 using a maxima operation. Next, two LSTM layers 

with 64 and 128 storage units, respectively, are combined with a CNN model using hyperbolic tangent for 

the regression problem. Finally, a fully connected layer with 2 output neurons is introduced to find the final 

predicted score using a linear function, where DBP, SBP are predicted one by one through each output 

neuron. A culling layer with a probability coefficient of 0.1 is used after each pooling layer, which forces 
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the network to be redundant and helps mitigate the overfitting problem. The parameters of each hidden 

layer of the neural network were taken from references to ensure consistent network construction.
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Fig. S1. Photograph of blood pressure measurement. The blood pressure of the subjects is measured 

using our wristwatch device. Our wristwatch device is worn on the left wrist for blood pressure 

measurement. Simultaneously, a commercial cuff sphygmomanometer (Omron J751) is worn on the right 

upper arm to conduct the blood pressure measurements synchronously. The blood pressure results measured 

by the cuff sphygmomanometer are as the reference or ground truth blood pressure for comparison with the 

measurements using our wristwatch device.
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Fig. S2. User interface of the wearable system. The system provides the real-time monitoring on pulse 

wave, skin temperature, heart rate, and blood pressure.



Table S1. The comparisons of different types of pressure sensors

Sensor type
Sensing 

materials 

Output for 
one pulse 

wave
Measuring Range Sensitivity Linearity 

Detection 
limit

Skin 
Temperature

Contact
pressure

Ref.

Multimodal 
piezo-thermic 

sensor
Skin & Pt

0-70 mV
(adjustable)

0-228.2kPa
7.85mV·kPa-1

(8-20kPa)
0.999 4Pa yes yes

This 
work

Piezoresistive 
sensors

Polyaniline △I/I0
0.024

0-10kPa
（Scope of work） 0.24kPa-1 N/A 2Pa no no 1

Piezoresistive 
sensors

Au N/A
0-10kPa

（Scope of work） 2.5E-4kPa-1 >0.99 N/A

yes
(Independent 
temperature 

sensor)

yes 2

Pressure 
capacitive 

sensors
PDMS △C/C0

0-10
0-35kPa

2.7kPa-1

（0.3–0.6 kPa） N/A 0.14Pa no yes 3

Piezoelectric 
sensors

PZT -0.1-0.1 V 0-45kPa
0.062kPa-1

（0–10 kPa） N/A N/A no no 4

Frictional 
electrical 

sensor

Fluorinated 
ethylene 

propylene & 
CNTs

0-10 nA N/A 0.21μA·kPa-1 0.994 10Pa no no 5

Frictional 
electrical 

sensor

Silicone 
rubber & 

paper
0-0.8 V 0–150 kPa

0.89V·kPa-1

(0-35kPa)
N/A 43Pa no no 6



Table S2. The state-of-the-art methods of wearable continuous blood pressure measurement

Sensor type
BP 

estimatio
n method

Data source – 
Number of 

subjects
Generalization

SBP 
estimation 

error 
(mmHg)

DBP 
estimation 

error 
(mmHg)

Ref

-0.03±5.56
(ME+SD)

0.05±3.91
(ME+SD)

Multimodal 
tactile sensor 

(Wrist collection)

MLP 
inputting 

pulse 
wave 

features, 
skin 

temperat
ure and 
wearing 
pressure, 

etc.

Own 
experiments – 

18

Model 
generalization 

across 
individuals**

4.43
(MAE)

3.06
(MAE)

This 
work*

PPG
(Fingertip 
collection)

PWA7

Own 
experiments - 

18

Model 
generalization 

across individuals

-0.19±8.77
(ME+SD)

0.77±5.26
(ME+SD)

Control 
experimen

t in this 
work

PPG at carotid artery PWV
Own 

experiments - 
35

Model 
generalization 

across individuals

1.15±7.98
(ME+SD)

0.86±6.36
(ME+SD)

8

Wrist frictional 
electrical pressure 

sensor
PWA

Own 
experiments - 

20

Model 
generalization 

across individuals

0.24±5.27
(ME±SD)

0.54±5.18
(ME±SD)

6

Wrist piezoresistive 
pressure 

PWV
Own 

experiments - 
Model 

generalization 
0.24±5.19
(ME±SD)

0.07±9.66
(ME±SD)

9



sensor+ECG 24 across individuals

Non-portable multi-
lead ECG + PPG 

finger clip
PWA

MIMIC-II 
database - 45

Model 
generalization 

across individuals

4.43±6.09
(MAE±SAE)

3.32±4.75
(MAE±SAE)

10

PPG finger clip PWA
MIMIC-III 

database - 510

Model 
generalization 

across individuals

9.43
(MAE)

6.88
(MAE)

11

Single lead ECG on 
the left and right 

arms + PPG finger 
clip

PTT+
PWA

Own 
experiments - 

27

Subject-specific 
model***

-0.37±5.21
(ME±SD)

-0.08±4.06
(ME±SD)

12

Wrist piezoelectric 
pressure sensor

Transfer 
Function

Own 
experiments - 

47

Subject-specific 
model

-0.89±6.19
(ME±SD)

-0.32±5.28
(ME±SD)

4

Arm and leg single 
lead ECG + PPG 

finger clip

PTT+
PWA

Own 
experiments - 

73

Subject-specific 
model

0.00±3.10
(ME±SD)

0.00±2.20
(ME±SD)

13

Non-portable multi-
lead ECG + wrist 

and ankle PPG

PAT+
PWA

Own 
experiments - 

85

Subject-specific 
model

1.62±7.76
(ME±SD)

1.49±5.52
(ME±SD)

14

Fingertip multi-
wavelength PPG

PTT
Own 

experiments - 
20

Subject-specific 
model

1.86±2.85
(MAE±SAE)

1.49±1.75
(MAE±SAE)

15

Wrist capacitive 
pressure sensor

PWA
Own 

experiments - 7
Subject-specific 

model
-0.05±2.09
(ME±SD)

16

Wrist piezoelectric 
pressure sensor + 
PPG finger clip

PTT
Own 

experiments - 
15

Subject-specific 
model

2.62±1.92
(MAE+SD)

1.36±1.05
(MAE+SD)

17



PPG finger clip PWA
MIMIC-II/III 
database - 15

Subject-specific 
model

-0.00±6.00
(ME±SD)

0.00±3.30
(ME±SD)

18

Multi Wrist 
piezoelectric 

pressure sensor 
array+ active 

pressure adaptation 
unit

PWA
Own 

experiments - 
17

Not stated
−0.05±4.61
(ME±SD)

0.11 ± 3.68
(ME±SD)

19

PPG finger clip PWA
MIMIC-II 

database - 1157
Not stated

1.55±5.41
(ME±SD)

-1.25±5.65
(ME±SD)

7

Wrist piezoresistive 
pressure sensor

PWA
Own 

experiments - 
85

Not stated
0.00±3.06
(ME±SD)

0.10±2.77
(ME±SD)

20

*ME is mean error. SD is standard deviation. MAE is mean absolute error. SAE is standard deviation of absolute error.
** Model generalization across individuals refers to the generalized model is trained and tested across different subjects.
*** Subject-specific model refers to the individual model is trained and tested by the same subject.
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