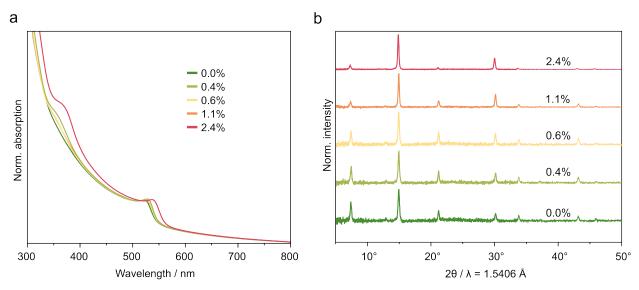
ELECTRONIC SUPPLEMENTARY INFORMATION

Bicolour, large area, inkjet-printed metal halide perovskite light emitting diodes


Vincent R. F. Schröder,^a Nicolas Fratzscher,^b Nicolas Zorn Morales,^b Daniel Steffen Rühl,^b Felix Hermerschmidt, *^b Eva L. Unger^{c,d,e} and Emil J. W. List-Kratochvil*^{a,b}

a. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

b. Institut für Physik, Institut für Chemie, Humboldt-Universität zu Berlin, IRIS Adlershof, Zum Großen Windkanal 2, 12489 Berlin, Germany

c. Department Solution Processing of Hybrid Materials & Devices, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin, Germany

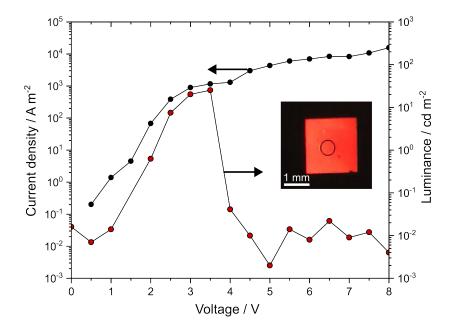
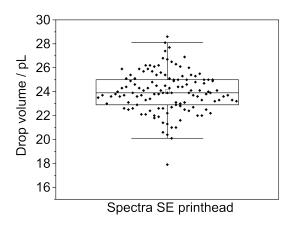

- d. Institut für Chemie, IRIS Adlershof, Humboldt Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
- e. Chemical Physics and NanoLund, Lund University, PO Box 124, 22100 Lund, Sweden

Figure S1: (a) Full view of the UV-vis spectra shown in Figure 2 b, showing the shift of the absorption edge of the patterned perovskite layers with increasing nominal iodide concentration. (b) Full view XRD pattern of the patterned perovskite layers.

Figure S2: Large area, dual coloured PeLEDs. Scale bar indicates 1 cm.


Figure S3: Current density-luminance-voltage characteristics of a pure red light emitting PeLED using PEA₂MA₃Pb₄I₁₃ as emitter layer. This layer was printed in a single step, no mixing of the perovskite inks took place. A maximum luminance of 25 cd m⁻² was achieved.

Calculation of nominal iodide content

The nominal I⁻/Br⁻ ratio ($R_{I/Br}$) was calculated from the volume (V_{drop}) of a single printed droplet, the number of printed droplets per area (N_{drops}) taken from the nominal printing resolution and the concentration of perovskite precursors in the ink (c). This yields the molarity of perovskite precursors in the printed ink. To yield the I⁻/Br⁻ ratio, the stoichiometry (f) of both inks (MAPbBr₃ and PEA₂MA₃Pb₄I₁₃) needs to be considered.

$$R_{I/Br} = \frac{n_1}{n_{Br}} = \frac{V_{drop,I} \times N_{drop,I} \times c_I \times f_I}{V_{drop,Br} \times N_{drop,Br} \times c_{Br} \times f_{Br}}$$

The drop volume for the deposition of bromide inks and iodide ink are nominally 30 pL and 1 pL. Determination of the drop volume with the built-in analyser tool of the LP50 inkjet printer revealed a significant spread of drop volume with a mean volume of 24 pL (Figure S2). Determination of the real drop volume of the (nominal) 1 pL printhead was not possible with the LP50 analyser tool. The number of deposited droplets corresponds to the printing resolution of the Br⁻-based MHP film (350 dpi) and the drop spacing of the I⁻-based precursor ink on the Br⁻ MHP layer. A drop distance of 250 μ m, 200 μ m, 150 μ m, 100 μ m correspond here to a resolution of 102 dpi, 127 dpi, 169 dpi and 254 dpi. The resolution must be squared, to yield the number of drops per area *N*_{drop} (drops per square inch). The concentration of bromide ink is 0.125 M and 0.031 M for the iodide ink. The stoichiometric factors are 3 and 13 respectively.

Figure S4: Determined drop volume of the 128 nozzles of a Spectra SE printhead with a nominal drop volume of 30 pL.