
Supporting Information

Strong, Tough and Anisotropic Bioinspired 
Hydrogels

Shu Wanga,b†, Ling Leia†, Yuanhao Tianc, Huiming Ninga*, Ning Hua,d*, Peiyi Wue, Hanqing Jiangf, 

Lidan Zhangg, Xiaolin Luoh, Feng Liua, Rui Zoud, Jie Wend, Xiaopeng Wua, Chenxing Xianga, Jie Liui*

Electronic Supplementary Material (ESI) for Materials Horizons.
This journal is © The Royal Society of Chemistry 2024



Materials and methods
Materials
PVA was purchased from Macklin with a degree of polymerization (DP) of about 1700 and a 
saponification degree of 99%. Glycerol was supplied by Guangdong Guanghua Sci-Tech Co. Ltd. 
Methanol and NaCl were purchased from Aladdin. 

Preparation of anisotropic fiber-based hydrogel 
After purified by DI water and methanol, the purified PVA was dissolved in DI water and stirred at 
95 ℃ for 2 h to obtain a 10 wt.% PVA solution. Then, the 10 wt.% PVA solution was injected at a 
rate of 0.05 ml min-1 through a stainless steel needle (25 G) into a cold methanol coagulation bath 
maintained at a temperature between -10℃ and -15℃ for the coagulation into fibers.1, 2 An electric 
rotating platform can rotate the coagulation bath at 7.5 rpm. The spun wet PVA fibers were 
directionally collected to a certain width on a rotating spool controlled by a variable-speed motor 
(Movie 1). After being thoroughly dried at room temperature in a vacuum oven at 60 ℃, PVA fibers 
were immersed in PVA/glycerin aqueous solutions at different concentrations (Table S3) at 60℃ 
for 12 h to fully swell. The swollen fibers were then sandwiched between two layers of 
polypropylene films and flattened, and the excess solution was removed. Finally, after three freeze-
thaw cycles, the anisotropic fiber-based hydrogels were obtained. In order to enhance ionic 
conductivity, NaCl was incorporated into the impregnating solutions during the initial mixing 
processes of PVA, glycerol and DI water. The content of NaCl ranged from 0.25 wt.% to 1 wt.%.

Mechanical test
The mechanical properties of the hydrogels were characterized using a universal testing machine 
(Shimadzu, model EZ-LX, 500N, Japan) at room temperature. The tensile speed and gauge length 
for tensile measurements were 30 mm/min and 8 mm, respectively. The elastic modulus was 
calculated from the linear region (ε=0-25%) of the tensile stress-strain curves. The toughness of the 
hydrogels was calculated as the area under tensile stress-strain curves. Each type of the prepared 
hydrogel was measured 5 times to obtain the average value. A pure shear test was performed using 
the above tensile tester at 20 mm/min, following the method established in reference. 3 Two samples, 
notched and unnotched, were used to measure the fracture energy Γ. The samples were cut into a 
rectangular shape with a width of 20 mm and a length of 30 mm (a0). The sample thickness was 
0.47 mm (b0). An initial notch of 10 mm in length was cut and the distance between the two clamps 
was fixed at 8 mm (L0). The force-length curves of the samples were recorded and the tearing energy 
was calculated from Γ=U(Lc)/(a0×b0), where U(Lc) is the work done by the applied force to the 
unnotched sample at the critical stretching displacement Lc of the moving clamp, where Lc is the
displacement at which the crack growth initiates in the notched sample.
Electrical test
An impedance analyzer (TH2839) was used to test the conductivity of the anisotropic fiber-based 
hydrogels and PVA hydrogels. The conductivity (σ, S m-1) was calculated by the following formula: 
σ=L/(R×S), where L is the distance between adjacent electrodes, and R and S are the resistance and 
cross-sectional area of the hydrogel, respectively. The change in resistance of the hydrogels after 
applying a strain was recorded by combining a digit multimeter (Keysight 34465A) and a universal 
testing machine. The relative resistance change rate was calculated by the following formula: 
ΔR/R0=(R-R0)/R0×100%, where R0 and R are the resistance of the original hydrogel and stretching 
hydrogel, respectively. Moreover, the gauge factor (GF) indicating the sensitivity of the hydrogel 
was obtained by using the following formula: GF=(ΔR/R0)/ε, where ε represents the applied strain.



Environmental stability test
The water retention capacity test was carried out by keeping the samples in an environmental 
chamber with a 50% relative humidity (RH) at 25 ℃ for 12 days. The anti-freezing performance of 
the hydrogel was analyzed by a differential scanning calorimetry (DSC, Netzsch DSC214). The 
temperature for testing ranged from -85℃ to 25℃, and the heating rate was 10℃ min-1. The 
hydrogels were immersed in DI water for 72 h. During this period, the swelling properties were 
measured by wiping and weighing the water content on the surface of the hydrogel after the hydrogel 
was taken out at intervals from the DI water.

In vitro cytotoxicity test
The MTS assay was utilized to detect the cytotoxicity and compatibility of the hydrogels by the 
viability of L929 fibroblast cells that were incubated with hydrogel leaching media.4 The hydrogel 
leaching media were obtained by immersing the hydrogels in the dulbecco's modified eagle medium 
(DMEM) for 7 days. L929 fibroblasts were inoculated on the extraction medium and the number of 
cells was about 4×105. The MTS cell viability assay was performed in at least 3 replicates of each 
measurement. After varying durations (1, 2 and 3 days) of cell culture, the medium in the well was 
discarded, the cells were washed with phosphate buffer saline (PBS), and the mixed solution (MTS: 
DMEM=1: 5) was added. The cells were cultured in an incubator with a constant temperature (37℃) 
for 1 h and then placed in 96-well plates filled with 200 μL of solution. The cell viability was 
evaluated by comparing the absorbance (OD) at 490 nm with Multiskan FC. By comparing the 
absorbance of the blank group and the test group, the cell viability rate was obtained to evaluate the 
biocompatibility of the hydrogels. L929 cells were stained using the calcein-AM/ETHD-I double 
staining assay after 3 days of culturing on the leaching medium for observation under an inverted 
fluorescence microscope.

Additional characterization
A scanning electron microscope (TM4000Plus II) was used to observe the morphologies of the 
hydrogels. Before the test, the hydrogels were freeze-dried to remove the water molecules while 
keeping its spatial structure intact. The samples were broken down in liquid nitrogen.

The experiments involving human subjects have been carried out with the full, informed 
consent of the volunteers, who are also co-authors of the paper.



Table S1 The mean and standard deviation values of elongation at break, strength, 
elastic modulus and work of fracture values of various fiber-based hydrogels.

Hydrogel Elongation at break
%

Strength
MPa

Modulus
MPa

Work of fracture
MJ m-3

PF_5P 117±99 0.41±0.07 0.14±0.01 0.59±0.21
PF_10P 256±14 0.90±0.09 0.19±0.01 1.44±0.16
PF_15P 510±21 2.05±0.20 0.32±0.05 5.47±0.44
PF_20P 759±46 3.79±0.45 0.54±0.06 13.71±1.96

PF_10P10G 920±35 5.71±0.61 0.72±0.09 26.89±3.13
PF_10P30G 1126±92 9.20±0.47 1.49±0.14 54.07±4.91
PF_10P50G 1719±77 12.80±0.70 4.51±0.76 134.47±9.29



Table S2 Comparison of the mechanical properties of the hydrogels developed in our 
work with some other tough hydrogels

Hydrogel Elongation 
at break

(%)

Strength
(MPa)

Modulus
(MPa)

Work of 
fracture
(MJ m-3)

Refs. symbol

PF_10P50G 1767 14 5.3 145.5 -Our work

PF_10P50G
 (pre-stretching)

394 45 26.9 129.5 -

PVA/ιC /Ca2+ 856 1.54 0.092 5.14 [5]

PVA/ANFs/TA 950 2.06 - - [6]

PVA/NaCl 730 8.03 1 28.7 [7]

PVA/ANF/ PANI 140 2.4 - - [8]

PVA/CNC/TA 1107.55 8.71 1.43 50.03 [9]

PVA/PHEA 2403 1.13 0.207 13.71 [10]

PVA/HA/PAA/PDA 988.76 11.76 - - [11]

PVA/Agar/AS 544 18 7.5 42.3 [12]

PVA/CS 406.4 4.02 2.07 9.31 [13]

PVA/HA/Fe3+ 340 8 10 19.6 [14]

PVA based 
hydrogel

polyacrylic acid-PVA 689 11.7 - - [15]

Zein/WPU 683 6.5 8.04 20.7 [16]

PAA/GO-Fe3+/CS 600 2.75 0.82 8.5 [17]

HAPAA/PANI 2590 0.9 - 7.85 [18]

P(AAc-co-Am)/PVA 1290 0.3295 - - [19]

CDs/HA/PVA 429 1.28 - - [20]

κ-CG/P(AAm-co-
F127DA)

2000 1.11 - 10.83 [21]

PAMPS–PAAM 1096 2.24 - - [22]

PAMPS-PCDME 656 1.46 - - [23]

double 
network (DN) 

hydrogel

B-DN gel membrane 942 8 - - [24]

PVA/glycerol/NaCl 570.7 3.1 0.52 8.65 [25]

PVA/Gly/CB/CNT 643.2 4.8 1.001 15.93 [26]

CPA 540 0.038 - 0.11 [27]

XG/PAAm 1769 1.5 0.32 11.91 [28]

glycerol-
water (G-W) 

hydrogel

PTCM-Gly 1500 0.16 - - [29]

anisotropic 
hydrogel

PAM-AA/CNF/Fe3+ 480 11 - - [4]



ACHH 22.6 25.6 218.2 - [30]

C4(MO)3N7-16 135 5.48 23.5 - [31]

CNFs/PAM 11 36 310 - [32]

PMPTC/PNaSS 267.3±1.3 25.8±1.33 59.0±6.57 38.03±2.83 [33]

TPN 435 0.29 [34]

highly entangled 455 0.39 [35]

PAAm-PAA 350 3.27 [36]

HC-SI 340 3.5 [37]

PEDOT:PSS 17 2.14 [38]

PIC/AgNWs 645 3.3 [39]

PMPTC/PNaSS 750±80 5.1±0.6 7.9±0.6 18.8±1.9 [40]

PAAc/CaAc 77 15.44 [41]

other 
hydrogels

PIC 210±54 6.8±0.85 56.3±12.5 10.4±2.4 [42]

Note: The symbols in the table are corresponding to Figure 3d.



Table S3 Composition ratio of the impregnating solution
Hydrogel Impregnating

Solution
PVA
(g)

Water
(g)

Glycerin
(g)

P/(W+G+P)
(w/w %)

G/(W+G)
(w/w %)

PF_5P 5% PVA 5 95 - 5 -
PF_10P 10% PVA 10 90 - 10 -
PF_15P 15% PVA 15 85 - 15 -
PF_20P 20% PVA 20 80 - 20 -

PF_10P10G
10% PVA

(10% glycerin)
10 81 9 10 10

PF_10P30G
10% PVA

(30% glycerin)
10 63 27 10 30

PF_10P50G
10% PVA

(50% glycerin)
10 45 45 10 50

Note: P, G and W in the table are the abbreviations for PVA, glycerin and water, respectively.
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Figure S1 Tensile stress-strain curves of single PVA fiber (10 samples).
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Figure S2 The transparency levels of PF_10P and PF_10P50G hydrogels. 

The transmittance of the hydrogels was measured by an UV-visible infrared spectrophotometer 
(Shimadzu, UV-3600, Japan) in the wavelength range of 200-800 nm. PF_10P and PF_10P50G are 
translucent. Letters on the paper can be seen through the hydrogels, and PF_10P50G was clearer 
than PF_10P.
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Figure S3 Tensile stress-strain curves of the PF_10P50G hydrogels with different 
widths.
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Figure S4 Water contents of various fiber-based hydrogels.

The water content (WC) was determined from the equation: WC=(Mw-Md)/Md×100%, where 
Mw and Md are the weight of anisotropic fibers-based hydrogels before and after freeze-drying. With 
the increase of the concentration of PVA and glycerol in the impregnating solution, the water content 
of hydrogel decreased gradually. The water content of PF_10P and PF_10P50G was 81.5±0.5% and 
41.8±0.7%, respectively. The decrease of the water content is because some water molecules in the 
hydrogel are replaced by glycerin, and glycerin will hinder the swelling of the PVA fiber, resulting 
in the decrease of fiber water absorption.
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Figure S5 ATR-FTIR spectra of dried PVA fibers (PF), freeze-dried PF_10P, 
PF_10P50G and PF_10P50G_0.5Na hydrogels.

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) of 
lyophilized hydrogels with different compositions was performed at room temperature by Nicolet 
iS50 to study the molecular structure and chemical bonds of the hydrogels.

In order to better understand the molecular interactions in hydrogels, we analyzed the total 
ATR-FTIR spectra of dried PVA fibers (PF), freeze-dried PF_10P, PF_10P50G and 
PF_10P50G_0.50Na hydrogels. Both PVA fibers and PF_10P are composed of PVA and have 
similar FTIR spectra, which show a broad characteristic peak at 3274 cm-1 for the O-H stretching 
vibrations, and peaks at 1419 and 1086 cm-1 for the CH2 bending vibrations and C-O stretching 
vibrations.12 Similarly, the PF_10P50G and PF_10P50G_0.50Na hydrogels are composed of PVA 
and glycerol and have similar FTIR spectra, which have a broad characteristic peak at 3277 cm-1 for 
the O-H stretching vibrations, and a peak at 1419 cm-1 for the CH2 bending vibrations. The peak of 
asymmetric stretching vibrations for C-O is at 1095 cm-1, while the peaks of symmetric stretching 
vibrations for C-O are at 1036 and 994 cm-1, respectively.25, 43 The peak of stretching vibrations for 
O-H shifted from 3274 cm-1 to 3277 cm-1 when glycerol is added, indicating that glycerol forms 
hydrogen interaction with the PVA chain, which weakens the strong hydrogen bonds between PVA 
chain.43 The hydrogen bonds between the PVA chains are broken, which densifies the hydrogels.44
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Figure S6 The mass fraction of fibers in PF_water, PF_10P, PF_50G, PF_10P50G 
hydrogels. 
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Figure S7 Stress of different hydrogels

Figure S5 demonstrated that the addition of glycerol results in the formation of 
hydrogen interaction with the PVA chain. Through the hydrogen interactions between 
glycerol and the PVA chain, the formation of multiple hydrogen bonds can occur. 45 
With the increasing of glycerol content, the number of hydrogen bond also increases. 
These hydrogen bonds effectively crosslink the PVA chains and promote their binding, 
resulting in higher strength, modulus, and toughness of PF. In addition, references 46-48 
have reported that non-covalent interaction can reform the fractured bonds, thereby 
enabling partial or complete recovery. As a non-covalent bond, hydrogen bond 
(introduced by glycerol) can facilitate dynamic fracture and re-crosslinking, allowing 
the fractured bonds to reconnect. This also contributes to the improved mechanical 
properties especially the fracture resistance and toughness of PF. Moreover, glycerol is 
able to improve the effective crosslinking density of the hydrogels,49 and the hydrogen 
bond zones can be utilized to achieve crack propagation insensitivity, effectively 
preventing the catastrophic propagation of fatigue cracks when fatigue damage occurs. 
50 
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Figure S8 Swelling ratio of PF_10P and PF_10P50G hydrogels soaked in DI water 
for 72h 
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Figure S9 Tensile stress-strain curves of PF_water, PF_10G, PF_30G and PF_50G 
(The figure on the left). Tensile and fracture state of the PF_50G hydrogel (The figure 
on the right).



Figure S10 Force-extension curves of the unnotched and notched samples of PF-
10P50G

To evaluate the fracture toughness of hydrogels, the classical pure shear test for measuring fracture 
energy of soft materials is performed. The fracture energy Γ calculated according to Figure S10 is 
305.04 kJ m-2, which contains both the energy for mechanical dissipation in regions around the 
crack due to viscoelasticity and the intrinsic fracture energy required to break polymer chains 3. As 
shown in Figure S10, unique crack shape evolution and crack advance were observed during the 
pure shear test. As revealed by the images, the crack did not advance in the transverse direction. 
Therefore, this kind of materials shows high toughness. 
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Figure S11 TGA curves of PF_10P, PF_10P50G and PF_10P50G_0.5Na hydrogels

The water retention capacity of hydrogels was further characterized by thermogravimetric 
analysis (TGA, Netzsch TG209). The temperature for testing increased from room temperature to 
800℃ at a scanning rate of 10℃ min-1 in N2 atmosphere.
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Figure S12 Ionic conductivity of 10P50G and PF_10P50G containing different 
contents of NaCl.
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(strain=1000%) and 10P50G_Na (strain=200%).
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