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1. Method for calculating the electronegativity of OGs

In order to investigate the effect of OGs on MN4, we consider the OGs as a whole and calculate 
their average electronegativity ( ). The formula for calculating by harmonic average method is 𝜒𝑂𝐺𝑠
as follows:
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Where  represents the total number of atoms in OGs, ,  and  respectively represent the 𝑁𝑂𝐺𝑠 𝑁𝐶 𝑁𝐻 𝑁𝑂

number of atoms C, H and O in OGs, ,  and  respectively represent the Pauli electronegativity 𝜒𝐶 𝜒𝐻 𝜒𝑂
of C, H and O.



2. Machine learning model used in this work 

The ML models used for training and prediction include RFR, KNN, SVR, NN, XGBR, 
LINER, GBR, GPR, and LASSO. Here is a brief introduction to them:

(1) RFR (Random Forest Regressor): RFR is an integrated learning model based on decision trees, 
which improves prediction accuracy by constructing multiple decision trees and taking their 
average values. Applicable to regression problems. ( Type: integrated learning model)

(2) KNN (K-Nearest Neighbors): Description: KNN performs classification or regression based 
on the nearest neighbor relationship of the sample. For a given sample, predictions are made 
by looking at its nearest k neighbors, either by majority voting or by average. (Type: 
Supervised learning model)

(3) SVR (Support Vector Regressor):SVR is an application of support vector machines that 
focuses on regression problems. By finding the support vector in the data, an optimal 
hyperplane is constructed to minimize the prediction error. (Type: Support vector machine 
model)

(4) NN (Neural Network): NN is a model that simulates the structure of human brain neural 
network. Composed of input layers, hidden layers, and output layers, it learns weights to 
achieve complex non-linear relationships and is suitable for a variety of tasks, including 
classification and regression. (Type: Deep learning model)

(5) XGBR (XGBoost Regressor): XGBR is a gradient lifting algorithm that improves 
performance by integrating multiple decision trees. It is excellent at handling structured data 
and regression problems. (Type: integrated learning model)

(6) LINER (Linear Regression): LINER is a simple but powerful linear model that performs 
regression by fitting linear relationships in the data. Suitable for problems where linear 
relationships are obvious. (Type: Linear regression model)

(7) GBR (Gradient Boosting Regressor): GBR is a gradient lifting algorithm that improves 
prediction performance by iteratively training a weak model and correcting the errors of the 
previous model. Applicable to regression problems. (Type: integrated learning model)

(8) GPR (Gaussian Process Regressor): GPR is based on Bayesian inference, which treats 
predictions as Gaussian distributions over the underlying functions. It is suitable for small 
sample regression problems and provides uncertainty estimation. (Type: Gaussian process 
model)

(9) LASSO (Least Absolute Shrinkage and Selection Operator): LASSO is a linear regression 
model that achieves feature selection by adding L1 regularization to the coefficients. It is 
suitable for regression problems in high dimensional data sets. (Type: Linear regression 
model)



3.Supplementary Figures

Figure S1. In OGs@MN4 catalyst, oxygen functional groups (OH, COOH, CHO, COC, C-O-C, 
C=O, etc.) have electron-rich oxygen atom(s).



Figure S2. Optimized structures of single doped OGs@CoN4. (a) CoN4, (b) COC@CoN4, (c) C-O-
C@CoN4, (d) C=O@CoN4, (e) OH@CoN4, (f) CHO@CoN4 and (g) COOH@CoN4.



Figure S3. Optimized structures of single doped OGs@FeN4. (a) FeN4, (b) COC@FeN4, (c) C-O-
C@FeN4, (d) C=O@FeN4, (e) OH@FeN4, (f) CHO@FeN4 and (g) COOH@FeN4.



Figure S4. Four configurations of 2OH@CoN4 are considered in this work.



Figure S5. Optimized structures of double doped OGs@MN4. (a) 2C=O@CoN4, (b) 2CHO@CoN4, 
(c) 2COC@CoN4, (d) 2C-O-C@CoN4, (e) 2COOH@CoN4, (f) 2OH@CoN4, (g) 2C=O@FeN4, (h) 
2CHO@FeN4, (i) 2COC@FeN4, (j) 2C-O-C@FeN4, (k) 2COOH@FeN4, (l) 2OH@FeN4,



Figure S6. Optimized structures of double doped OGs@MN4. (a) COOH+OH@MN4, (b) 
COOH+C-O-C@MN4, (c) COOH+COC@MN4, (d) COOH+CHO@MN4, (e) COC+COOH@MN4, 
(f) COC+CHO@MN4, (g) CHO+COC@MN4, (h) C=O+COOH@MN4.



Figure S7. Optimized structures of multiple oxygen doped OGs@MN4. (a) OH+COOH+C-O-
C@CoN4, (b) OH+COOH+2C-O-C@CoN4, (c) OH+COOH+2C-O-C+CHO@CoN4, (d) 
2OH+2CHO@CoN4, (e) 2OH+2CHO+COOH@CoN4, (f) 2OH+2CHO+2COOH@CoN4, (g) 
2OH+2CHO+2COOH+C-O-C@CoN4, (h) 2OH+2CHO+2COOH+2C-O-C@CoN4, (i) OH+ 
COOH +C-O-C@FeN4, (j) OH+COOH+2C-O-C@FeN4, (k) OH+COOH+2C-O-C+CHO@FeN4, 
(l) 2OH+2CHO@FeN4, (m) 2OH+2CHO+COOH@FeN4, (n) 2OH+2CHO+2COOH@FeN4, (o) 
2OH+2CHO+2COOH+C-O-C@FeN4, (p) 2OH+2CHO+2COOH+2C-O-C@FeN4,



Figure S8. The variations of (a) temperature and (b) energy versus the AIMD simulation time for 2 
ps of OGs@CoN4 under 298.15 K.



Figure S9. The variations of (a) temperature and (b) energy versus the AIMD simulation time for 2 
ps of OGs@CoN4 under 1298.15 K.



Figure S10. The variations of (a) temperature and (b) energy versus the AIMD simulation time for 
2 ps of OGs@FeN4 under 298.15 K.



Fig

ure S11. The variations of (a) temperature and (b) energy versus the AIMD simulation time for 2 ps 
of OGs@FeN4 under 1298.15 K.



Figure S12. The free energy diagram of 4eORR and 2eORR pathway on OGs@CoN4 and 
OGs@FeN4 in implicit water solvent.



Figure S13. The overpotential and free energy diagram of 2eORR pathway on double doped 
OGs@CoN4 and OGs@FeN4 in implicit water solvent.



Figure S14. The free energy diagram of 2eORR pathway on double doped OGs@CoN4 and 
OGs@FeN4 in implicit water solvent.
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Figure S15. Linear correlation between △G*OOH_vac and △G*OH_vac.



Figure S16. Charge distribution of single doped OGs@CoN4. (a) CoN4, (b) COC@CoN4, (c) C-O-
C@CoN4, (d) C=O@CoN4, (e) OH@CoN4, (f) CHO@CoN4 and (g) COOH@CoN4.



Figure S17. Charge distribution of single doped OGs@FeN4. (a) FeN4, (b) COC@FeN4, (c) C-O-
C@FeN4, (d) C=O@FeN4, (e) OH@FeN4, (f) CHO@FeN4 and (g) COOH@FeN4.



Figure S18. D band center of single doped OGs@CoN4. (a) CoN4, (b) COC@CoN4, (c) C-O-
C@CoN4, (d) C=O@CoN4, (e) OH@CoN4, (f) CHO@CoN4 and (g) COOH@CoN4.



Figure S19. D band center of single doped OGs@FeN4. (a) FeN4, (b) COC@FeN4, (c) C-O-
C@FeN4, (d) C=O@FeN4, (e) OH@FeN4, (f) CHO@FeN4 and (g) COOH@FeN4.



Figure S20. Charge distribution of double doped OGs@CoN4. (a) 2C=O@ CoN4, (b) 2CHO@ 
CoN4, (c) 2COC@ CoN4, (d) 2C-O-C@ CoN4, (e) 2COOH@ CoN4, and (f) 2OH@ CoN4.



Figure S21. Charge distribution of double doped OGs@FeN4. (a) 2C=O@ FeN4, (b) 2CHO@ FeN4, 
(c) 2COC@ FeN4, (d) 2C-O-C@ FeN4, (e) 2COOH@ FeN4, and (f) 2OH@ FeN4.



Figure S22. Charge of (a) Co in CoN4, single doped OGs@CoN4, double doped OGs@CoN4, and 
(b) Fe in FeN4, single doped OGs@FeN4, double doped OGs@FeN4.



Figure S23. The conventional charge based method and the Eg based method proposed in this study 
were used to predict *OOH adsorption free energy.



Figure S24. The correlation between the calculated OOH adsorption free energy and the 
fundamental gap under implicit solvent conditions.


