## **Electronic Supplementary Information**

## Multicolor vision perception of flexible optoelectronic synapse with high-

## sensitivity for skin sunburn warning

Yaqian Yang,<sup>1,2</sup> Ying Li,\*1 Di Chen,<sup>1,2</sup> Guozhen Shen\*1

Dr. Yaqian Yang, Dr. Ying Li, Prof. Di Chen, Prof. Guozhen Shen School of Integrated Circuits and Electronics Beijing Institute of Technology Beijing 100081, China E-mail: liying0326@bit. edu.cn; gzshen@ bit. edu.cn

Dr. Yaqian Yang, Prof. Di Chen School of Mathematics and Physics University of Science and Technology Beijing Beijing 100083, China.

Keywords: lead-free halide perovskite, flexible artificial synapse, multicolor vision perception, highsensitivity, skin sunburn warning



Fig. S1 (a) UPS data of the PEA<sub>2</sub>SnI<sub>4</sub> films. (b) Tauc plot of the PEA<sub>2</sub>SnI<sub>4</sub> film.

The work function was calculated using the following formulas:<sup>1</sup>

$$E_{\rm F} = -21.22 + E_{\rm cutoff} \tag{1}$$

in which  $E_{cutoff}$  is the binding energy of the second-order cutoff in the spectrum. It can be calculated as -3.35 eV.  $E_{Fermi}$  is the difference between the Fermi energy and the  $E_{VBM}$ . Thus, the calculated value of  $E_{VBM}$  is 5.63 eV. The Tauc plot reveals that the direct band gap ( $E_g$ ) of the Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> film to be 1.98 eV. Therefore, on the basis of  $E_{VBM}$  and  $E_g$  ( $E_g = E_{CBM} - E_{VBM}$ ), the conduction band ( $E_{CBM}$ ) can be calculated as -3.65 eV.



**Fig. S2** EPSC behavior triggered by illumination for 1 s at different optical power densities (520 nm, 3 V, pulse width of 1 s).



Fig. S3 S versus light intensity of  $PEA_2SnI_4/ZnO$  devices under weak light illumination.



Fig. S4 AFM images of  $PEA_2SnI_4$  film.



Fig. S5 EDS spectra of the PEA<sub>2</sub>SnI<sub>4</sub> films.



Fig. S6 (a) XPS spectra of  $PEA_2SnI_4$  films and the high-resolution spectra of (b) I 3d.



Fig. S7 The optical photographs of the  $PEA_2SnI_4$  films after different storage periods under air

conditions.



**Fig. S8** XRD measurements of the PEA<sub>2</sub>SnI<sub>4</sub> films after different storage periods under air conditions.



Fig. S9 (a) Top-view SEM image of ZnO film and (b) corresponding AFM images.



Fig. S10 (a) PL spectra and (b) the time-resolved PL decay and fitting curves of  $PEA_2SnI_4$  and the  $PEA_2SnI_4/ZnO$  films.



**Fig. S11** EPSC behavior triggered by illumination for 1 s at weak optical power densities (520 nm, 0 V, pulse width of 1 s).



**Fig. S12** The EPSC behavior of the device measured at (a) different pulse numbers and (b) different illumination time.



Fig. S13 (a) Schematic diagram of a 3×3 synaptic device arrays. (b) Optical photographs of the test. (c) Visualization of the learning and forgetting curve of the letter "T" (520 nm, 420  $\mu$ W cm<sup>-2</sup>).



**Fig. S14** (a) Optical images at different bending angles and (b) corresponding EPSC after 1 s of illumination. (c) Changes in EPSC values when light Is withdrawn for 0 and 10 seconds (exposure for one second under 520 nm,1.25 mW cm<sup>-2</sup>). The bending cycles are 500 cycles with an interval of 10 cycles.



**Fig. S15** (a) EPSC behavior triggered by light of different wavelength with the same pulse width (1 s, 450 nm 420 uW cm<sup>-2</sup>, 520 nm 1.25 mW cm<sup>-2</sup>, 635 nm, 420 uW cm<sup>-2</sup>). (b) The decode results of the photoelectronic synapse to the American Standard Code for Information Interchange (ASCII).



Fig. S16 Photographs for optical displays of the designed flexible circuit board on a (a) canvas

bag and (b) hat.

| Device Structure                          | Ρ (μW<br>cm <sup>-2</sup> ) | λ (nm) | Opt. Volt<br>(V) | ΔE (J)    | S (%) | Ref          |
|-------------------------------------------|-----------------------------|--------|------------------|-----------|-------|--------------|
| PEA <sub>2</sub> Snl <sub>4</sub> /ZnO    | 17                          | 520    | 0                | 0         | 95.38 | This<br>work |
| Al <sub>2</sub> O <sub>3</sub> /CdS       | 2.48×10 <sup>3</sup>        | 365    | _                | 0         | 20.00 | [2]          |
| DPPDTT/CsPbBr <sub>3</sub><br>QD          | 50                          | 450    | -0. 5 m          | 25 f      | 20    | [3]          |
| BP flakes                                 | 2×10 <sup>3</sup>           | 280    | 50 m             | 5.75 n    | 26.09 | [4]          |
| 2DP/PMMA/pent<br>acene                    | 690                         | 400    | 0.1              | 0.29 p    | 33.3  | [5]          |
| ReS <sub>2</sub> /h-BN/mono<br>graphene   | 0.11<br>nW/µm²              | 532    | 0.1              | 0.06 n    | 41.67 | [6]          |
| Dif-TES-ADT                               | _                           | _      | 0.1              | 0.07~34 f | 50    | [7]          |
| ZnO/MoO <sub>3</sub> /Mo                  | 8                           | 390    | _                | 37 p      | 66.67 | [8]          |
| CNT/CsPbBr <sub>3</sub> QD                | 48                          | 516    | 5                | 1.7 n     | 70.59 | [9]          |
| Ag/BiOI/Pt                                | _                           | 400    | 0.01             | 100 f     | 75    | [10]         |
| CsPbBr <sub>3</sub> /PDPP4T               | 650                         | 450    | 10 μ             | 1.3 f     | 98.33 | [11]         |
| CsBi <sub>3</sub> I <sub>10</sub> /PDPP4T | 320                         | 430    | -1               | 1.25 n    | 99.2  | [12]         |

**Table S1** Comparisons between previous low-energy synaptic devices and this work.

## References

- 1 Y. J. Liu, Y. X. Gao, J. Y. Zhi, R. Q. Huang, W. J. Li, X. Y. Huang, G. H. Yan, Z. Ji and W. J. Mai, *Nano Res.*, 2022, **15**, 1094.
- 2 X. Han, Y. Zhang, Z. Huo, X. Wang, G. Hu, Z. Xu, H. Lu, Q. Lu, X. Sun, L. Qiu, P. Yan and C. Pan, *Adv. Electron. Mater.*, 2023, **9**, 2201068.
- 3 D. Hao, J. Zhang, S. Dai, J. Zhang and J. Huang, ACS Appl. Mater. Interfaces, 2020, **12**, 39487.
- T. Ahmed, M. Tahir, M. X. Low, Y. Ren, S. A. Tawfik, E. L. H. Mayes, S. Kuriakose, S. Nawaz, M. J. S. Spencer, H. Chen, M. Bhaskaran, S. Sriram and S. Walia, *Adv. Mater.*, 2021, 33, e2004207.
- 5 J. Zhang, Q. Shi, R. Wang, X. Zhang, L. Li, J. Zhang, L. Tian, L. Xiong and J. Huang, *InfoMat*, 2021, **3**, 904.
- 6 Y. Chen, Y. Kang, H. Hao, X. Xie, J. Zeng, T. Xu, C. Li, Y. Tan and L. Fang, *Adv. Funct. Mater.*, 2022, **33**, 2209781.
- 7 J. Shi, J. Jie, W. Deng, G. Luo, X. Fang, Y. Xiao, Y. Zhang, X. Zhang and X. Zhang, *Adv. Mater.*, 2022, **34**, e2200380.
- 8 T. Guo, B. Zhang, X. Wang, Y. Xiao, B. Sun, Y. N. Zhou and Y. A. Wu, *Adv. Funct. Mater.*, 2023, **33**, 2303879.
- Q. B. Zhu, B. Li, D. D. Yang, C. Liu, S. Feng, M. L. Chen, Y. Sun, Y. N. Tian, X. Su, X. M. Wang, S. Qiu, Q. W. Li, X. M. Li, H. B. Zeng, H. M. Cheng and D. M. Sun, *Nat. Commun.*, 2021, **12**, 1798.
- 10 P. Lei, H. Duan, L. Qin, X. Wei, R. Tao, Z. Wang, F. Guo, M. Song, W. Jie and J. Hao, *Adv. Funct. Mater.*, 2022, **32**, 2201276.
- 11 T. Chen, X. Wang, D. Hao, S. Dai, Q. Ou, J. Zhang and J. Huang, *Adv. Optical Mater.*, 2021, **9**, 2002030.
- 12 R. Wang, P. Chen, D. Hao, J. Zhang, Q. Shi, D. Liu, L. Li, L. Xiong, J. Zhou and J. Huang, ACS Appl. Mater. Interfaces, 2021, **13**, 43144.