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Fig.1 Heatmap based on the expression pattern of piRNAs in retina and RPE across different
samples. The Heatmap represents the individual piRNAs in which samples 9 and 10 were of
RPE showing a distinct expression pattern compared to the rest of the retinal samples. The

red and blue in the Heatmap signify piRNAs' high and low expressions, respectively
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Fig.S2 RTL-P analysis confirms the 3’-terminal 2'-O-methylation of piRNAs. A.
Amplification of miR-26A with anchored and unanchored primers, B. Amplification of
piRNA with anchored and unanchored primer C. Amplification of piRNA with anchored and
unanchored primer at high exposure (RTL-P — Reverse Transcription at Low dNTP
concentration followed by PCR; UAP — Unanchored primer; AP — Anchored primer, NTC-

no template control), Boxed lanes are kept in the final fig.2B
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Fig.S3 The replicate data plots represent the distribution in terms of expression of piRNAs
derived from repeat elements across human retina and RPE samples. A. Distribution across

human retinal samples (n=14) B. Distribution across human RPE samples (n=2).



MOTIF LOGO E-VALUE P-VALUE SITES
1. CACAATG 2, A AA 1.26-001 3.00-002 0, 11.5%
2 ACCACTANACCAC C A T A C 2.4¢-001 6.0e-002 62,23.8%
WVIAVIA AVefy
2.0e+000 5.0e-001 23,8.8%
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Fig.S4 Enriched motifs among the piRNAs. - Logos with the corresponding E-values and P-

values represent the motifs identified by STREME.
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Fig.S5 Venn diagram of commonly expressed piRNAs between human retina and RPE and

other tissues such as brain, cardiac cells, ovary and testis
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Fig.S6 Amplification of miR-182 and piR-hsa-26131 from ARPE-19 Total cellular RNA.

Total RNA was isolated from ARPE-19 cells using TRIzol extraction and subjected to
reverse transcription using specific primers for either miR-182 or piR-hsa-26131. This was
followed by cDNA amplification using the same forward and reverse primers. The amplified

product was verified by running on a 12% polyacrylamide gel and by TOPO-cloning plus

Sanger sequencing.
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Fig.S7 Standard Curves for piR-hsa-26131, miR-182 and U6. TOPO cloned plasmids

from the PCR products were used to draw standard curves for the different small RNAs

amplified. These were then used to extrapolate copy numbers from Ct values for ARPE-19

cells.
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Fig.S8 The replicate data plots represent the distribution in terms of expression of
PiRNAs derived from tRNAs across human retina and RPE samples. A. Distribution

across human retinal samples (n=14) B. Distribution across human RPE samples (n=2).
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Fig.S9 The replicate data plots represent the distribution in terms of expression of td-
piRNAs with respect to their amino acid counterpart containing tRNAs across human

retina and RPE samples. A. Distribution across human retinal samples (n=14) B.

Distribution across human RPE samples (n=2).
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Fig.S10 Functional enrichment analysis of predicted target genes using g: profiler

representing the GO terms with statistically significant negative log10 of adjusted p-values
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Fig.S11 The visualization of the enriched pathways among the piRNA target genes with p-

value<0.05, g-value<0.05 and jaccard index of 0.50 using EnrichmentMap in Cytoscape
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Supplementary Fig.S12 KEGG view: (A) Focal adhesion pathway using piRNA target
genes
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Supplementary Fig.S12 KEGG view: (B) PI3K-Akt Signaling pathway using piRNA target
genes
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Supplementary Fig.S12 KEGG view: (C) VEGF Signaling pathway using piRNA target
genes
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Fig.S13 HIWI2 silencing in ARPE19 cell line and Y79 cell line. (a) HIWI2 silencing was
done in ARPE19 cell line and three representative experiments were shown [probed with
anti-rabbit-PIWIL4 (Pierce)], boxed lanes are kept in Fig.8A, (b) HIWI2 silencing was
repeated in ARPE19 cell line for the reproducibility of the results [probed with anti-mouse-

PIWIL4 (Santa Cruz) which always detected 2 bands, but the knockdown was evident], (c)



HIWI2 silencing was done in Y79 cell line at different time points and concentration, boxed

lanes are kept in Fig.4A. Scr: Scramble, Sil: Silencing, T: Treatment
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Fig. S14 — Raw agarose gel images showing the expression of SNAREs and Rabs in Si-
Control and Si-HIWI2 ARPE19 cells that are presented in Fig.7C. GAPDH was used as
the loading control. The SNARE expression in HIWI2 silenced samples were processed from
the following images.

a. STX1A, Rab5, and GAPDH
b. VAMP7*, VAMPS, and, STX6

b.1. High contrast image of “b”
c. Rab8
d. STX16
*genes that are marked with asterisk are in higher contrast in Fig.8C.
Scr-Scramble, Sil or Si-Silenced, NTC - No template control.



