Electronic Supplementary Information

Base-mediated trimerization of enones under solvent-free and

ball-milling conditions

Gang Shao,[†] Pinhua Li, ^{†,‡} Zheng-Chun Yin,[†] Jun-Shen Chen,[†] Xu-Ling Xia[†] and Guan-Wu Wang*,^{†,§}

[†]Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

E-mail: gwang@ustc.edu.cn

[‡]Department of Chemistry, Anhui Polytechnic University, Wuhu 241000, P. R. China [§]State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

Table of Contents

1.	General information	S2
2.	Mechanosynthesis and spectral data of products 2a-2t and 2a'	S2
3.	Liquid-phase reaction of 1a with KO'Bu and H ₂ O	S10
4.	Control experiments	S10
5.	Mechanosynthesis of products 4a and 4q	S13
6.	X-ray data of product 2a	S14
7.	References	S16
8.	NMR spectra of products 2a-2v, 2a', 3a, 4a and 4q	S17

1. General information

Enones 1 were prepared by following the literature procedure.¹ Commercially available reagents were used without further purification. NMR spectra were recorded on a Bruker Advance III HD 400 NMR spectrometer (Bruker BioSpin AG, Fällanden, Switzerland; 400 MHz for ¹H NMR; 101 MHz for ¹³C NMR) and a Bruker Advance III HD 500 NMR spectrometer (Bruker BioSpin AG, Fällanden, Switzerland; 500 MHz for ¹H NMR; 126 MHz for ¹³C NMR). ¹H NMR chemical shifts were determined relative to TMS at 0.00 ppm or residual CDCl₃ at δ 7.26 ppm or residual DMSO- d_6 at δ 2.50 ppm. ¹³C NMR chemical shifts were determined relative to TMS at 0.00 ppm or CDCl₃ at δ 77.16 ppm. Data for ¹H NMR and ¹³C NMR are reported as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet). High-resolution mass spectra (HRMS) were taken on a Waters Acquity UPLC-Xevo G2 QTof mass spectrometer (Waters, Milford, MA, USA) with FTMS-ESI in positive mode. Ball-milling reactions were performed in a Retsch MM400 mixer mill (Retsch GmbH, Haan, Germany), using a 5 mL stainless-steel jar with four 5-mm diameter stainless-steel balls and were milled at a frequency of 1800 rounds per minute (30 Hz) at room temperature.

2. Mechanosynthesis and spectral data of products 2a-2t and 2a'

General procedure for the mechanochemical synthesis of products 2a-2t: A mixture of enone 1a (1b–1t, 0.20 mmol) with KO'Bu (0.40 mmol) and H₂O (0.60 mmol) together with four stainless-steel balls (5-mm in diameter) was introduced into a stainless-steel jar (5 mL). The reaction vessel along with another identical vessel was closed and fixed on the vibration arms of a Retsch MM400 mixer mill and vibrated at a rate of 1800 rounds per minute (30 Hz) at room temperature for 1.5 h. After completion of the reaction, the resulting mixture was combined by washing with ethyl acetate. Then, the reaction mixture was filtered through a silica gel plug with ethyl acetate as the eluent and evaporated in a vacuum. The residue was separated by flash column chromatography on silica gel with ethyl acetate/petroleum ether (2:1) as the eluent to afford product 2a (2b–2t).

2a, Ar¹=Ph, Ar²=Ph

Synthesis and spectral data of 2a: By following the general procedure, the reaction of **1a** (41.6 mg, 0.20 mmol) with KO'Bu (44.9 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **2a** (34.0 mg, 95% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.5 Hz, 2H), 7.30–6.95 (m, 20H), 6.83 (t, J = 7.7 Hz, 2H), 6.72 (t, J = 7.4 Hz, 1H), 5.40 (d, J = 2.2 Hz, 1H), 4.49 (d, J = 11.0 Hz, 1H), 4.27–4.13 (m, 2H), 4.11–4.00 (m, 1H), 2.51 (t, J = 14.0 Hz, 1H), 2.26 (dd, J = 14.0, 3.5 Hz, 1H). Product **2a** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2a, 2b}

2b, $Ar^1 = p - CH_3OC_6H_4$, $Ar^2 = Ph$

Synthesis and spectral data of 2b: By following the general procedure, the reaction of **1b** (47.6 mg, 0.20 mmol) with KO'Bu (44.8 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **2b** (35.9 mg, 86% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.8 Hz, 2H), 7.38–7.30 (m, 4H), 7.29–7.23 (m, 2H), 7.18–7.05 (m, 4H), 6.97 (t, J = 7.3 Hz, 1H), 6.84 (t, J = 7.6 Hz, 2H), 6.75–6.67 (m, 3H), 6.56–6.49 (m, 4H), 5.56 (d, J = 2.0 Hz, 1H), 4.44–4.34 (m, 1H), 4.20–4.11 (m, 2H), 4.09–3.96 (m, 1H), 3.71 (s, 3H), 3.69 (s, 3H), 3.67 (s, 3H), 2.44 (t, J = 13.9 Hz, 1H), 2.20 (dd, J = 13.9, 3.5 Hz, 1H). Product **2b** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2a}

2c, $Ar^1 = m - CH_3OC_6H_4$, $Ar^2 = Ph$

Synthesis and spectral data of 2c: By following the general procedure, the reaction of **1c** (47.7 mg, 0.20 mmol) with KO'Bu (44.6 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **2c** (19.6 mg, 47% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 9.7 Hz, 2H), 7.18–7.07 (m, 7H), 7.03–6.90 (m, 3H), 6.89–6.69 (m, 8H), 6.66 (s, 1H), 6.63–6.56 (m, 1H), 5.36 (d, J = 1.6 Hz, 1H), 4.49–4.41 (m, 1H), 4.22–4.10 (m, 2H), 4.08–3.96 (m, 1H), 3.70 (s, 3H), 3.62 (s, 3H), 3.60 (s, 3H), 2.48 (t, J = 14.0 Hz, 1H), 2.25 (dd, J = 14.0, 3.4 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 207.2, 203.8, 159.6, 159.0, 158.9, 147.8, 142.1, 140.6, 139.8, 138.6, 129.3, 128.8, 128.6, 128.5, 128.2, 128.1, 127.1, 126.9, 120.7, 120.1, 119.6, 118.7, 117.3, 112.5, 111.7, 111.4, 111.1, 75.5, 57.2, 57.0, 55.34, 55.31, 48.3, 45.9, 43.5. HRMS (ESI) *m/z*: Calcd for C₄₁H₃₈O₆Na [M+Na]⁺ 649.2561; found 649.2569.

2d, $Ar^1 = p - CIC_6H_4$, $Ar^2 = Ph$

Synthesis and spectral data of 2d: By following the general procedure, the reaction of **1d** (48.7 mg, 0.20 mmol) with KO'Bu (44.9 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **2d** (37.9 mg, 89% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.6 Hz, 2H), 7.28–6.98 (m, 17H), 6.88 (t, J = 7.7 Hz, 2H), 6.78 (t, J = 7.3 Hz, 1H), 5.37 (d, J = 2.3 Hz, 1H), 4.42–4.33 (m, 1H), 4.19–4.09 (m, 2H), 4.06–3.95 (m, 1H), 2.42 (t, J = 14.0 Hz, 1H), 2.22 (dd, J = 14.0, 3.5

Hz, 1H). Product **2d** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2a, 2b}

Synthesis and spectral data of 2e: By following the general procedure, the reaction of **1e** (48.1 mg, 0.20 mmol) with KO'Bu (44.7 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **2e** (38.3 mg, 90% yield) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.55 (t, J = 1.8 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.29– 6.99 (m, 17H), 6.96 (t, J = 7.8 Hz, 1H), 6.92 (t, J = 7.8 Hz, 1H), 6.80 (t, J = 7.4 Hz, 1H), 5.21 (d, J = 2.4 Hz, 1H), 4.39 (d, J = 11.1 Hz, 1H), 4.21–4.08 (m, 2H), 4.03–3.95 (m, 1H), 2.46 (t, J = 14.1 Hz, 1H), 2.25 (dd, J = 14.1, 3.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 205.5, 202.2, 147.8, 141.4, 140.2, 139.2, 138.1, 134.4, 134.1, 133.8, 132.9, 131.8, 129.7, 129.2, 129.0, 128.5, 128.4, 127.8, 127.7, 127.44, 127.42, 127.39, 127.1, 125.7, 125.31, 125.29, 122.9, 75.1, 56.82, 56.80, 47.8, 45.4, 43.3. HRMS (ESI) *m/z*: Calcd for C₃₈H₂₉³⁵Cl₃O₃Na [M+Na]⁺ 661.1074; found 661.1073.

2f, $Ar^1 = p - BrC_6H_4$, $Ar^2 = Ph$

Synthesis and spectral data of 2f: By following the general procedure, the reaction of **1f** (57.8 mg, 0.20 mmol) with KO'Bu (44.9 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **2f** (36.4 mg, 71% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 7.25– 7.21 (m, 4H), 7.20–7.05 (m, 10H), 7.02 (t, J = 7.3 Hz, 1H), 6.88 (t, J = 7.7 Hz, 2H), 6.79 (t, J = 7.3 Hz, 1H), 5.36 (d, J = 2.2 Hz, 1H), 4.41–4.32 (m, 1H), 4.19–4.08 (m, 2H), 4.05–3.95 (m, 1H), 2.42 (t, J = 14.0 Hz, 1H), 2.22 (dd, J = 14.0, 3.6 Hz, 1H). Product **2f** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2a, 2b}

Synthesis and spectral data of 2g: By following the general procedure, the reaction of 1g (42.8 mg, 0.20 mmol) with KO'Bu (44.7 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded 2g (29.6 mg, 80% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 4.8 Hz, 1H), 7.32 (d, J = 3.8 Hz, 1H), 7.30–

7.28 (m, 2H), 7.24–7.17 (m, 2H), 7.13 (t, *J* = 7.5 Hz, 3H), 7.03 (d, *J* = 5.2 Hz, 2H), 6.98 (d, *J* = 3.5 Hz, 1H), 6.94 (t, *J* = 7.6 Hz, 2H), 6.84–6.74 (m, 5H), 5.77–5.67 (m, 1H), 4.24–4.12 (m, 2H), 4.07–3.90 (m, 2H), 2.50–2.32 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 196.4, 150.5, 143.5, 134.0, 132.3, 130.5, 127.2, 127.1, 126.8, 126.4, 126.1, 126.0, 125.7, 125.6, 122.8, 121.7, 73.5, 58.5, 46.2, 41.8, 28.6. HRMS (ESI) *m/z*: Calcd for C₃₂H₂₆O₃S₃Na [M+Na]⁺ 577.0937; found 577.0945.

2h, $Ar^1 = Ph$, $Ar^2 = p - CH_3OC_6H_4$

Synthesis and spectral data of 2h: By following the general procedure, the reaction of **1h** (47.9 mg, 0.20 mmol) with KO'Bu (44.7 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **2h** (34.6 mg, 87% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.5 Hz, 2H), 7.29–7.13 (m, 10H), 7.10–6.98 (m, 7H), 6.63 (d, J = 8.6 Hz, 2H), 6.36 (d, J = 8.7 Hz, 2H), 5.35 (d, J = 2.0 Hz, 1H), 4.49–4.39 (m, 1H), 4.19–4.06 (m, 2H), 4.05–3.93 (m, 1H), 3.63 (s, 3H), 3.47 (s, 3H), 2.45 (t, J = 14.0 Hz, 1H), 2.21 (dd, J = 14.0, 3.5 Hz, 1H). Product **2h** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.²

2i, Ar^1 =Ph, Ar^2 =p-CH₃C₆H₄

Synthesis and spectral data of 2i: By following the general procedure, the reaction of **1i** (43.8 mg, 0.20 mmol) with KO'Bu (45.0 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **2i** (23.7 mg, 63% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.7 Hz, 2H), 7.29–7.11 (m, 10H), 7.08–6.96 (m, 7H), 6.88 (d, J = 7.7 Hz, 2H), 6.62 (d, J = 7.8 Hz, 2H), 5.35 (d, J = 1.7 Hz, 1H), 4.45 (d, J = 11.0 Hz, 1H), 4.25–4.08 (m, 2H), 4.05–3.95 (m, 1H), 2.47 (t, J = 14.1 Hz, 1H), 2.21 (dd, J = 14.1, 3.3 Hz, 1H), 2.12 (s, 3H), 1.91 (s, 3H). Product **2i** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2a}, ^{2b}, ^{2c}

Synthesis and spectral data of 2j: By following the general procedure, the reaction of 1j (48.0 mg, 0.20 mmol) with KO'Bu (44.7 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded 2j (31.8 mg, 79% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.7 Hz, 2H), 7.32–7.15 (m, 10H), 7.14–7.02 (m, 9H), 6.80 (d, J = 8.4 Hz, 2H), 5.34 (d, J = 1.8 Hz, 1H), 4.48–4.40 (m, 1H), 4.21–4.09 (m, 2H), 4.08–3.97 (m, 1H), 2.45 (t, J = 14.0 Hz, 1H), 2.22 (dd, J = 14.0, 3.3 Hz, 1H). Product **2j** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2a, 2b}

Synthesis and spectral data of 2k: By following the general procedure, the reaction of 1k (56.8 mg, 0.20 mmol) with KO/Bu (44.9 mg, 0.40 mmol) and HaO (10.0 µL, 0.60

1k (56.8 mg, 0.20 mmol) with KO'Bu (44.9 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded 2k (40.6 mg, 88% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.5 Hz, 2H), 7.31–7.16 (m, 10H), 7.16–7.04

(m, 7H), 7.04–6.98 (m, 2H), 7.04–6.92 (m, 2H), 5.32 (d, J = 7.5 Hz, 2H), 7.31–7.16 (m, 10H), 7.16–7.04 (m, 7H), 7.04–6.98 (m, 2H), 7.04–6.92 (m, 2H), 5.32 (d, J = 2.0 Hz, 1H), 4.48–4.40 (m, 1H), 4.20–4.08 (m, 2H), 4.07–3.96 (m, 1H), 2.45 (t, J = 14.0 Hz, 1H), 2.22 (dd, J = 14.0, 3.4 Hz, 1H). Product **2k** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2a}

2I, $Ar^1=Ph$, $Ar^2=m-BrC_6H_4$

Synthesis and spectral data of 21: By following the general procedure, the reaction of **11** (57.6 mg, 0.20 mmol) with KO'Bu (44.7 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **21** (36.4 mg, 79% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.2 Hz, 2H), 7.47 (s, 1H), 7.40–7.23 (m, 6H), 7.21 (t, J = 7.5 Hz, 2H), 7.17–6.97 (m, 8H), 6.93 (t, J = 7.8 Hz, 1H), 6.83 (d, J = 8.0 Hz, 2H), 6.69 (t, J = 7.8 Hz, 1H), 5.39 (d, J = 2.0 Hz, 1H), 4.46 (d, J = 11.0 Hz, 1H), 4.17 (t, J = 10.9 Hz, 1H), 2.43 (t, J = 11.0 Hz, 1H), 4.05–3.95 (m, 1H), 2.43 (t, J = 14.0 Hz, 1H), 2.24 (dd, J = 14.0, 3.5 Hz, 1H). Product **2I** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2a}

2m, Ar¹=Ph, Ar²=2-naphthyl

Synthesis and spectral data of 2m: By following the general procedure, the reaction of 1m (52.4 mg, 0.20 mmol) with KO'Bu (44.7 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded 2m (19.1 mg, 45% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.64–7.58 (m,

4H), 7.53 (d, J = 8.1 Hz, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 7.9 Hz, 1H), 7.38–7.30 (m, 4H), 7.13–7.01 (m, 8H), 7.12–7.01 (m, 2H), 6.96 (t, J = 7.4 Hz, 1H), 6.91 (t, J = 7.7 Hz, 2H), 6.81 (t, J = 7.6 Hz, 2H), 5.47 (d, J = 1.8 Hz, 1H), 4.67 (d, J = 11.3 Hz, 1H), 4.49 (t, J = 10.9 Hz, 1H), 4.41 (t, J = 11.2 Hz, 1H), 4.34–4.25 (m, 1H), 2.66 (t, J = 14.0 Hz, 1H), 2.35 (dd, J = 14.0, 3.4 Hz, 1H). Product **2m** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2a}

2n, Ar¹=Ph, Ar²= 2-furyl

Synthesis and spectral data of 2n: By following the general procedure, the reaction of **1n** (39.8 mg, 0.20 mmol) with KO^tBu (44.9 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **2n** (21.7 mg, 63% yield) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 7.7 Hz, 2H), 7.51 (d, J = 7.7 Hz, 2H), 7.45 (d, J = 7.7 Hz, 2H), 7.39–7.30 (m, 2H), 7.23 (t, J = 7.7 Hz, 2H), 7.18 (d, J = 7.2 Hz, 2H), 7.16 (d, J = 7.2 Hz, 2H), 7.09 (s, 1H), 7.05 (t, J = 7.3 Hz, 1H), 6.85 (s, 1H), 6.00 (s, 1H), 5.92 (d, J = 2.8 Hz, 1H), 5.74 (d, J = 2.8 Hz, 1H), 5.67 (s, 1H),5.37 (d, J = 2.0 Hz, 1H), 4.62 (d, J = 11.7 Hz, 1H), 4.48 (t, J = 11.3 Hz, 1H), 4.19 (t, J = 11.5 Hz, 1H), 4.09 (td, J = 12.1, 3.4 Hz, 1H), 2.45 (t, J = 14.1 Hz, 1H), 2.21 (dd, J = 14.1, 3.6 Hz, 1H). Product **2n** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2b}

Synthesis and spectral data of 20: By following the general procedure, the reaction of **10** (50.1 mg, 0.20 mmol) with KO'Bu (44.4 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **20** (32.3 mg, 76% yield) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 8.2 Hz, 2H), 7.24–7.18 (m, 4H), 7.16 (d, J = 8.7 Hz, 2H), 7.06–6.99 (m, 2H), 6.97 (d, J = 8.1 Hz, 2H), 6.88–6.82 (m, 4H), 6.62 (d, J = 8.7 Hz, 2H), 6.35 (d, J = 8.9 Hz, 2H), 5.42 (d, J = 2.2 Hz, 1H), 4.43–4.35 (m, 1H), 4.13–4.05 (m, 2H), 4.02–3.92 (m, 1H), 3.63 (s, 3H), 3.47 (s, 3H), 2.39 (t, J = 13.2 Hz, 1H), 2.203 (s, 3H), 2.196 (s, 3H), 2.16 (s, 3H), 2.18–2.14 (m, 1H). Product **20** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2c}

2p, $Ar^{1}=p-CH_{3}C_{6}H_{4}$, $Ar^{2}=p-CH_{3}C_{6}H_{4}$

Synthesis and spectral data of 2p: By following the general procedure, the reaction of **1p** (47.9 mg, 0.20 mmol) with KO'Bu (44.5 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **2p** (30.3 mg, 75% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.0 Hz, 2H), 7.20 (t, J = 7.5 Hz, 4H), 7.13 (d, J = 7.9 Hz, 2H), 7.06–6.98 (m, 2H), 6.95 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 7.8 Hz, 2H), 6.83 (d, J = 7.8 Hz, 4H), 6.60 (d, J = 7.9 Hz, 2H), 5.43 (d, J = 1.7 Hz, 1H), 4.41 (d, J = 10.9 Hz, 1H), 4.19–4.08 (m, 2H), 4.04–3.92 (m, 1H), 2.42 (t, J = 13.8 Hz, 1H), 2.19 (s, 6H), 2.17–2.13 (m, 4H), 2.11 (s, 3H), 1.90 (s, 3H). Product **2p** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2b}, ^{2c}

Synthesis and spectral data of 2q: By following the general procedure, the reaction of 1q (55.6 mg, 0.20 mmol) with KO'Bu (44.8 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded 2q (29.7 mg, 63% yield) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 8.6 Hz, 2H), 7.22 (t, J = 8.9 Hz, 4H), 7.17 (t, J = 8.3 Hz, 4H), 7.13–6.98 (m, 8H), 6.87 (d, J = 8.7 Hz, 2H), 5.27 (d, J = 2.3 Hz, 1H), 4.33 (d, J = 11.4 Hz, 1H), 4.12 (t, J = 11.1 Hz, 1H), 4.05 (t, J = 10.8 Hz, 1H), 4.02–3.94 (m, 1H), 2.36 (t, J = 14.0 Hz, 1H), 2.18 (dd, J = 14.0, 3.4 Hz, 1H). Product **2q** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2a,2b}

2r, $Ar^{1}=p-CIC_{6}H_{4}$, $Ar^{2}=p-BrC_{6}H_{4}$

Synthesis and spectral data of 2r: By following the general procedure, the reaction of 1r (64.0 mg, 0.20 mmol) with KO'Bu (44.8 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded 2r (38.1 mg, 72% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.6 Hz, 2H), 7.30–7.15 (m, 8H), 7.14–7.06 (m, 6H), 7.06–6.93 (m, 4H), 5.26 (d, J = 2.0 Hz, 1H), 4.33 (d, J = 11.1 Hz, 1H), 4.20–3.91 (m, 3H), 4.11 (t, J = 10.8 Hz, 1H), 4.04 (t, J = 10.6 Hz, 1H), 4.01–3.92 (m, 1H), 2.35 (t, J = 14.0 Hz, 1H), 2.18 (dd, J = 14.0, 3.3 Hz, 1H). Product **2r** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2a,2c}

Synthesis and spectral data of 2s: By following the general procedure, the reaction of **1s** (60.1 mg, 0.20 mmol) with KO'Bu (44.9 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **2s** (43.6 mg, 89% yield) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 8.2 Hz, 2H), 7.24–7.17 (m, 6H), 7.12 (d, J = 8.5 Hz, 2H), 6.98 (d, J = 8.0 Hz, 4H), 6.94 (d, J = 8.8 Hz, 2H), 6.91–6.85 (m, 4H), 5.41 (d, J = 2.4 Hz, 1H), 4.39 (d, J = 11.1 Hz, 1H), 4.17–4.05 (m, 2H), 4.03–3.95 (m, 1H), 2.39 (t, J = 13.9 Hz, 1H), 2.23 (s, 3H), 2.22 (s, 3H), 2.20–2.17 (m, 1H), 2.16 (s, 3H). Product **2s** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2c}

Synthesis and spectral data of 2t: By following the general procedure, the reaction of **1t** (51.5 mg, 0.20 mmol) with KO'Bu (44.8 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) afforded **2t** (32.4 mg, 73% yield) as a white solid.

¹H NMR (500 MHz, DMSO- d_6) δ 7.59 (d, J = 8.6 Hz, 2H), 7.37 (t, J = 8.1 Hz, 4H), 7.23 (d, J = 8.5 Hz, 5H), 7.19 (d, J = 7.9 Hz, 2H), 7.14 (d, J = 8.7 Hz, 3H), 6.91 (d, J = 7.9 Hz, 2H), 6.68 (d, J = 8.0 Hz, 2H), 5.29 (s, 1H), 4.91 (d, J = 11.6 Hz, 1H), 4.65 (t, J = 11.1 Hz, 1H), 3.90 (t, J = 11.3 Hz, 1H), 3.68–3.59 (m, 1H), 2.83 (t, J = 13.0 Hz, 1H), 2.08 (s, 3H), 1.89 (s, 3H), 1.78 (dd, J = 13.4, 3.3 Hz, 1H). Product **2t** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2c}

Mechanochemical synthesis of product 2a': A mixture of **1a** (41.8 mg, 0.20 mmol) with KO'Bu (22.7 mg, 0.20 mmol) and H₂O (10.0 μ L, 0.60 mmol) together with four stainless-steel balls (5-mm in diameter) was introduced into a stainless-steel jar (5 mL). The reaction vessel along with another identical vessel was closed and fixed on the vibration arms of a Retsch MM400 mixer mill and vibrated at a rate of 1800 rounds per minute (30 Hz) at room temperature for 1.5 h. After completion of the reaction, the resulting mixture was combined by washing with ethyl acetate. Then, the reaction mixture was filtered through a silica gel plug with ethyl acetate as the eluent and evaporated in a vacuum. The residue was separated by flash column chromatography on silica gel with ethyl acetate/petroleum ether (2:1) as the eluent to afford product **2a'** (20.7 mg, 58% yield) along with product **2a** (7.5 mg, 21% yield) as a white solid.

Spectral data of 2a':

¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.31–7.22 (m, 3H), 7.20 (d, J = 7.9 Hz, 2H), 7.14 (t, J = 7.3 Hz, 1H), 7.12–7.02 (m, 9H), 7.00–6.92 (m, 3H), 6.85–6.75 (m, 3H), 5.72 (d, J = 12.0 Hz, 1H), 5.23 (d, J = 2.3 Hz, 1H), 4.37 (t, J = 4.3 Hz, 1H), 4.25–4.10 (m, 2H), 3.42 (t, J = 13.7 Hz, 1H), 2.05 (dd, J = 13.7, 3.0 Hz, 1H). Product **2a'** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.³

3. Liquid-phase reaction of 1a with KO'Bu and H2O

To a 25 mL Schlenk tube with a magnetic stir bar were added **1a** (47.1 mg, 0.20 mmol), KO'Bu (44.6 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol). Subsequently, diethyl ether (Et₂O, 1.5 mL) was added by syringe. The resulting mixture was stirred at room temperature for 48 h. Then, the reaction mixture was filtered through a silica gel plug with ethyl acetate as the eluent and evaporated in vacuo. The residue was separated by flash column chromatography on silica gel with ethyl acetate/petroleum ether as the eluent to afford products **2a** (8.9 mg, 22% yield), **3a** (12.7 mg, 27% yield) and other unidentified byproducts.

Spectral data of 3a:

¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.2 Hz, 4H), 7.47 (t, J = 7.4 Hz, 2H), 7.40– 7.28 (m, 8H), 7.22–6.93 (m, 14H), 6.85 (t, J = 7.4 Hz, 2H), 4.77 (dd, J = 12.1, 5.3 Hz, 2H), 4.45 (t, J = 11.8 Hz, 2H), 4.19 (t, J = 11.5 Hz, 1H), 3.99 (t, J = 5.2 Hz, 1H). Product **3a** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.^{2a}

Other solvents, including toluene (1.5 mL), dimethyl sulfoxide (DMSO, 1.5 mL), tetrahydrofuran (THF, 1.5 mL) and acetonitrile (CH₃CN, 1.5 mL), were also used to replace diethyl ether in the above procedure. However, all of them led to lower product yields.

4. Control experiments

4.1 Scavenging experiments with TEMPO

Scavenging experiment with 3 equiv. of TEMPO: A mixture of 1a (41.8 mg, 0.20 mmol), KO'Bu (44.9 mg, 0.40 mmol), H₂O (10.0 μ L, 0.60 mmol) and 2,2,6,6-tetramethylpiperidinooxy (TEMPO, 94.2 mg, 0.60 mmol) together with four stainless-

steel balls (5-mm in diameter) was introduced into a stainless-steel jar (5 mL). The reaction vessel along with another identical vessel was closed and fixed on the vibration arms of a Retsch MM400 mixer mill and vibrated at a rate of 1800 rounds per minute (30 Hz) at room temperature for 1.5 h. After completion of the reaction, the resulting mixture was combined by washing with ethyl acetate. Then, the reaction mixture was filtered through a silica gel plug with ethyl acetate as the eluent and evaporated in vacuo. The residue was separated by flash column chromatography on silica gel with ethyl acetate/petroleum ether (2:1) as the eluent to afford product **2a** (16.9 mg, 47% yield) as a white solid.

Scavenging experiments with 10 equiv. of TEMPO: A mixture of 1a (41.4 mg, 0.20 mmol), KO'Bu (44.4 mg, 0.40 mmol), H₂O (10.0 μ L, 0.60 mmol) and TEMPO (312.0 mg, 2.0 mmol) together with four stainless-steel balls (5-mm in diameter) was introduced into a stainless-steel jar (5 mL). The reaction vessel along with another identical vessel was closed and fixed on the vibration arms of a Retsch MM400 mixer mill and vibrated at a rate of 1800 rounds per minute (30 Hz) at room temperature for 1.5 h. After completion of the reaction, the resulting mixture was combined by washing with ethyl acetate. Then, the reaction mixture was filtered through a silica gel plug with ethyl acetate as the eluent and evaporated in a vacuum. The residue was separated by flash column chromatography on silica gel with ethyl acetate/petroleum ether (2:1) as the eluent to afford product 2a (14.7 mg, 41% yield) as a white solid.

4.2 Mechanochemical reaction under an inert atmosphere

A mixture of **1a** (41.6 mg, 0.20 mmol), KO'Bu (44.9 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) together with four stainless-steel balls (5-mm in diameter) was introduced into a stainless-steel jar (5 mL). The jar was filled with nitrogen (N₂) and tightened in a glovebox. The reaction vessel along with another identical vessel was closed and fixed on the vibration arms of a Retsch MM400 mixer mill and vibrated at a rate of 1800 rounds per minute (30 Hz) at room temperature for 1.5 h. After completion of the reaction, the resulting mixture was combined by washing with ethyl acetate. Then, the reaction mixture was filtered through a silica gel plug with ethyl acetate as the eluent and evaporated in a vacuum. The residue was separated by flash column chromatography on silica gel with ethyl acetate/petroleum ether (2:1) as the eluent to afford product **2a** (29.6 mg, 83% yield) as a white solid.

4.3 HRMS detection of benzaldehyde from the reaction mixture

A mixture of **1a** (41.1 mg, 0.20 mmol), KO'Bu (44.6 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) together with four stainless-steel balls (5-mm in diameter) was introduced into a stainless-steel jar (5 mL). The reaction vessel along with another identical vessel was closed and fixed on the vibration arms of a Retsch MM400 mixer mill and vibrated at a rate of 1800 rounds per minute (30 Hz) at room temperature for 0.5 h. The benzaldehyde could be detected by high-resolution mass spectrometry (HRMS). HRMS (ESI) *m/z*: Calcd for C7H7O [M+H]⁺ 107.0491; found 107.0487 (**Figure S1**).

Figure S1 HRMS detection of benzaldehyde

4.4 Mechanosynthesis of products 2u and 2v

A mixture of chalcone **1a** (41.6 mg, 0.20 mmol), 4'-methoxyacetophenone (14.0 μ L, 0.10 mmol), KO'Bu (44.9 mg, 0.40 mmol) and H₂O (10.0 μ L, 0.60 mmol) together with four stainless-steel balls (5-mm in diameter) was introduced into a stainless-steel jar (5 mL). The reaction vessel along with another identical vessel was closed and fixed on the vibration arms of a Retsch MM400 mixer mill and vibrated at a rate of 1800 rounds per minute (30 Hz) at room temperature for 1.5 h. After completion of the reaction, the resulting mixture was combined by washing with ethyl acetate. Then, the reaction mixture was filtered through a silica gel plug with ethyl acetate as the eluent and evaporated in a vacuum. The residue was separated by flash column chromatography on silica gel with ethyl acetate/petroleum ether as the eluent to afford product **2a** (13.2 mg, 37% yield) along with isomeric products **2u** and **2v** (24.1 mg, 41% yield) as inseparable white solids.

2u & **2v**, Ar^1 =Ph, Ar^2 =Ph, Ar^3 =*p*-CH₃OC₆H₄

Spectral data of 2u and 2v:

¹H NMR (400 MHz, CDCl₃) δ 7.59–7.52 (m, 2H, **2u** & **2v**), 7.33 (d, J = 8.8 Hz, 2H, **2u** & **2v**), 7.30–7.12 (m, 9H, **2u** & **2v**), 7.11–7.06 (m, 2H, **2u** & **2v**), 7.05–7.00 (m, 3H, **2u** & **2v**), 7.00–6.94 (m, 1H, **2u** & **2v**), 6.87–6.81 (m, 2H, **2u** & **2v**), 6.75–6.68 (m, 1H, **2u** & **2v**), 6.51 (d, J = 8.7 Hz, 2H, **2u** & **2v**), 5.58 (d, J = 2.1 Hz, 0.5H, **2v**), 5.40 (d, J =

2.1 Hz, 0.5H, **2u**), 4.53–4.42 (m, 1H, **2u** & **2v**), 4.26–4.15 (m, 2H, **2u** & **2v**), 4.12–4.02 (m, 1H, **2u** & **2v**), 3.70–6.66 (m, 3H, **2u** & **2v**), 2.56–4.46 (m, 1H, **2u** & **2v**), 2.29–2.21 (m, 1H, **2u** & **2v**).

¹³C NMR (126 MHz, CDCl₃) δ 207.3, 204.7, 203.7, 201.4, 163.3, 162.5, 146.1, 146.0, 142.3, 142.2, 139.0, 138.9, 138.8, 138.1, 132.6, 132.3, 131.8, 131.7, 130.9, 130.4, 129.9, 128.34, 128.31, 128.2, 128.1, 128.05, 127.99, 127.9, 127.70, 127.66, 127.5, 127.4, 126.8, 126.7, 126.6, 124.82, 124.80, 112.9, 112.8, 75.4, 75.3, 56.83, 56.79, 55.7, 55.3, 55.2, 48.05, 48.01, 45.94, 45.90, 43.4, 43.3.

HRMS (ESI) *m/z*: Calcd for C₃₉H₃₄O₄Na [M+Na]⁺ 589.2349; found 589.2351.

Scheme S1 Proposed reaction mechanism for the formation of 2u and 2v

5. Mechanochemical synthesis of products 4a and 4q

A mixture of **2a** (**2q**, 0.10 mmol) and TfOH (0.30 mmol) together with four stainlesssteel balls (5-mm in diameter) was introduced into a stainless-steel jar (5 mL). The reaction vessel along with another identical vessel was closed and fixed on the vibration arms of a Retsch MM400 mixer mill and vibrated at a rate of 1800 rounds per minute (30 Hz) at room temperature for 1.5 h. After completion of the reaction, the resulting mixture was combined by washing with ethyl acetate. Then, the reaction mixture was filtered through a silica gel plug with ethyl acetate as the eluent and evaporated in a vacuum. The residue was separated by flash column chromatography on silica gel with ethyl acetate/petroleum ether as the eluent to afford product 4a (4q).

Synthesis and spectral data of 4a: By following the general procedure, the reaction of **2a** (53.9 mg, 0.10 mmol) with TfOH (26.5 μ L, 0.30 mmol) afforded **4a** (48.2 mg, 93% yield) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 7.2 Hz, 2H), 7.37–6.97 (m, 20H), 6.96–6.80 (m, 3H), 6.34 (s, 1H), 5.12 (d, J = 9.2 Hz, 1H), 4.35 (d, J = 8.6 Hz, 1H), 4.24 (t, J = 10.7 Hz, 1H), 3.95 (t, J = 10.8 Hz, 1H);

¹³C NMR (126 MHz, CDCl₃) δ 204.3, 201.9, 143.0, 140.4, 139.7, 139.2, 138.1, 137.8, 132.5, 132.1, 131.8, 128.8, 128.39, 128.36, 128.3, 128.2, 128.1, 127.8, 127.4, 127.3, 127.14, 127.10, 126.5, 55.7, 55.3, 49.8, 48.1.

HRMS (ESI) *m/z*: Calcd for C₃₈H₃₀O₂Na [M+Na]⁺ 541.2138; found 541.2145.

4q, $Ar^1 = p - CIC_6H_4$, $Ar^2 = p - CIC_6H_4$

Synthesis and spectral data of 4q: By following the general procedure, the reaction of **2q** (70.1 mg, 0.10 mmol) with TfOH (26.5 μ L, 0.30 mmol) afforded **4q** (61.2 mg, 89% yield) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 8.7 Hz, 2H), 7.23–7.20 (m, 2H), 7.19–7.11 (m, 8H), 7.11–7.06 (m, 4H), 6.95 (s, 4H), 6.22 (t, J = 1.9 Hz, 1H), 4.98–4.90 (m, 1H), 4.31–4.23 (m, 1H), 4.07 (dd, J = 10.9, 10.5 Hz, 1H), 3.87 (dd, J = 11.2, 10.9 Hz, 1H). Product **4q** is a known compound, and its ¹H NMR data are consistent with those reported in the literature.⁴

6. X-ray data of product 2a

White flake crystals of **2a** were obtained by slow diffusion of **2a** in CHCl₃/*n*-hexane solution at about 4 °C. Single-crystal X-ray diffraction data were collected on a diffractometer (SuperNova, Rigaku) equipped with a CCD area detector using graphite-monochromated CuK α radiation ($\lambda = 1.54184$ Å) in the scan range of 7.222° < 2 θ < 145.894°. The structure was solved with direct methods using SHELXT and refined

with full-matrix least-squares refinement using the SHELXL program within OLEX2. Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as deposition number CCDC 2277780.

Figure S2 ORTEP diagram for one enantiomer of racemic 2a with 15% thermal ellipsoids.

Identification code	2277780		
Crystal	$C_{38}H_{32}O_3$		
Empirical formula	$C_{38}H_{32}O_3$		
Formula weight	536.63		
Temperature/K	293(2)		
Crystal system	triclinic		
Space group	P-1		
a/Å	12.4366(4)		
b/Å	12.5553(3)		
c/Å	20.7421(7)		
α/°	94.962(2)		
β/°	97.385(3)		
$\gamma/^{\circ}$	101.068(2)		
Volume/Å ³	3131.56(17)		
Z	4		
$\rho_{\text{calc}} g/cm^3$	1.138		
µ/mm ⁻¹	0.556		
F(000)	1136.0		
Crystal size/mm ³	0.2 imes 0.18 imes 0.05		
Radiation	$CuK\alpha (\lambda = 1.54184)$		
2Θ range for data collection/°	7.222 to 145.894		
Index ranges	$-15 \le h \le 13, -11 \le k \le 15, -25 \le 1 \le 25$		
Reflections collected	22430		
Independent reflections	12132 [$R_{int} = 0.0287$, $R_{sigma} = 0.0366$]		
Data/restraints/parameters	12132/0/742		
Goodness-of-fit on F ²	1.040		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0518$, $wR_2 = 0.1492$		
Final R indexes [all data]	$R_1 = 0.0660, wR_2 = 0.1626$		
Largest diff. peak/hole / e Å ⁻³	0.63/-0.26		

Table S1 Crystal data and structure refinement for 2a.

7. References

[1] Y. Li, H. Xu, M. Xing, F. Huang, J. Jia and J. Gao, Org. Lett., 2015, 17, 3690-3693.

[2] (a) Y. Zhang, X. Wu, L. Hao, Z.-R. Wong, S. J. L. Lauw, S. Yang, R. D. Webster and Y. R. Chi, Org. Chem. Front., 2017, 4, 467–471; (b) J. Zheng, S. Fan, S. Liu, G. Shen, W.-D. Si, X. Dong, X. Huang, Y. Zhang, Q. Yao, Z. Li and D. Sun, Inorg. Chem. Front., 2022, 9, 5607–5615; (c) H.

Gezegen and M. Ceylan, Synth. Commun., 2015, 45, 2344-2349.

[3] (a) Z. Shan, X. Hu, L. Hu and X. Peng, Helv. Chim. Acta, 2009, 92, 1102–1111.

[4] S. Mukhtar, M. A. Alsharif, M. I. Alahmdi and H. Parveen, *Asian J. Chem.*, 2018, **30**, 1102–1108.

8. NMR spectra of products 2a-2v, 2a', 3a, 4a and 4q

Figure S3 ¹H NMR (400 MHz, CDCl₃) of compound 2a

Figure S4 ¹H NMR (400 MHz, CDCl₃) of compound 2b

Figure S5¹H NMR (400 MHz, CDCl₃) of compound 2c

Figure S6¹³C NMR (126 MHz, CDCl₃) of compound 2c

Figure S7 Expanded ¹³C NMR (126 MHz, CDCl₃) of compound 2c

Figure S8¹H NMR (400 MHz, CDCl₃) of compound 2d

Figure S9 ¹H NMR (500 MHz, CDCl₃) of compound 2e

Figure S10¹³C NMR (126 MHz, CDCl₃) of compound 2e

Figure S11 Expanded ¹³C NMR (126 MHz, CDCl₃) of compound 2e

Figure S12 ¹H NMR (400 MHz, CDCl₃) of compound 2f

Figure S13 ¹H NMR (400 MHz, CDCl₃) of compound 2g

Figure S14 ¹³C NMR (126 MHz, CDCl₃) of compound 2g

Figure S15 Expanded ¹³C NMR (126 MHz, CDCl₃) of compound 2g

Figure S16¹H NMR (400 MHz, CDCl₃) of compound 2h

Figure S17 ¹H NMR (400 MHz, CDCl₃) of compound 2i

Figure S18 ¹H NMR (400 MHz, CDCl₃) of compound 2j

Figure S19 ¹H NMR (400 MHz, CDCl₃) of compound 2k

Figure S20 ¹H NMR (400 MHz, CDCl₃) of compound 21

Figure S21 ¹H NMR (400 MHz, CDCl₃) of compound 2m

Figure S22 1 H NMR (500 MHz, CDCl₃) of compound 2n

Figure S23 ¹H NMR (500 MHz, CDCl₃) of compound 20

Figure S24 ¹H NMR (400 MHz, CDCl₃) of compound 2p

Figure S25 ¹H NMR (500 MHz, CDCl₃) of compound 2q

Figure S26 ¹H NMR (400 MHz, CDCl₃) of compound 2r

Figure S27 ¹H NMR (500 MHz, CDCl₃) of compound 2s

Figure S28 ¹H NMR (500 MHz, DMSO-*d*₆) of compound 2t

Figure S30¹³C NMR (126 MHz, CDCl₃) of compounds 2u and 2v

Figure S32 ¹H NMR (500 MHz, CDCl₃) of compound 2a'

Figure S33 ¹H NMR (500 MHz, CDCl₃) of compound 3a

Figure S34 ¹H NMR (500 MHz, CDCl₃) of compound 4a

Figure S36 Expanded ¹³C NMR (126 MHz, CDCl₃) of compound 4a

Figure S37 ¹H NMR (500 MHz, CDCl₃) of compound 4q