ELECTRONIC SUPPLEMENTARY INFORMATION for:

Halogen-Bonded Cocrystals via Resonant Acoustic Mixing

Alireza Nari, Jeffrey S. Ovens, and David L. Bryce*

Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies

University of Ottawa

Ottawa, Ontario, Canada K1N6N5

* Author to whom correspondence may be addressed

dbryce@uottawa.ca

phone 613-562-5800

fax 613-562-5170

Table of Contents

7.1: RAM mechanochemistry synthesis S14
7.2: Ball milling preparation
7.3: PXRD results
7.4: ¹³ C CP/MAS SSNMR results S15
8: 1d, (p-DITFB) [·] (PheDON)S16
8.1: RAM mechanochemistry synthesis S16
8.2: Ball milling preparation S16
8.3: PXRD results S16
8.4: ¹³ C CP/MAS SSNMR results
9: 2d, (sym-TFTIB) (PheDON)S17
9.1: RAM mechanochemistry synthesis S17
9.2: Ball milling preparation
9.3: Crystal preparation by slow evaporation:
9.4: PXRD results
9.5: ¹³ C CP/MAS SSNMR results
10: 1e, (p-DITFB) [·] (DIZFON)
10.1: RAM mechanochemistry synthesis: S19
10.2: Ball milling preparation S19
10.3: PXRD results S19
10.4: ¹³ C CP/MAS SSNMR results S20
11: 2e, (sym-TFTIB) ⁻ (DIZFON)
11.1: RAM mechanochemistry synthesis S20
11.2: Ball milling preparation S20
11.3: Crystal preparation by slow evaporation S20
11.4: PXRD results
11.5: ¹³ C CP/MAS SSNMR results S21
Table S1. ¹³ C[¹ H] CPMAS solid-state NMR experimental conditions S22
Additional Details on Single-Crystal X-Ray Diffraction for 2d and 2e
References

Table of Figures

Figure S1. Experimental diffractograms for ball milled and RAM products, and calculated diffractogram for cocrystal 1a(i) , (p-DITFB) ⁻ 2(TMP)
Figure S2. ¹³ C solid-state NMR spectra of cocrystal 1a(i) , (p-DITFB).2(TMP): the ball mill product is depicted in blue (lower); RAM product in red (upper). The labels denote the C-N and C-I carbons of TMP and p-DITFB, respectively. The asterisks denote spinning sidebands
Figure S3. Diffractogram for the RAM product, and calculated diffractogram for cocrystal 1a(ii), 4(p- DITFB) ⁻ 1.5(TMP)
Figure S4. ¹³ C solid-state NMR spectra of XB acceptor TMP in black (lower) and cocrystal 1a(ii) , 4(p- DITFB) ⁻ 1.5(TMP), prepared by RAM in red (upper). The labels denote the C-N and C-I carbons of TMP and p-DITFB, respectively. The asterisks denote spinning sidebands
Figure S5. Diffractograms for ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal 2a , (sym-TFTIB) (TMP)
Figure S6. ¹³ C solid-state NMR spectra of XB acceptor TMP in black (lower) and cocrystal 2a , (sym-TFTIB) (TMP), prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N carbons of TMP, and C-I and C-F carbons of sym-TFTIB. The asterisks denote spinning sidebands
Figure S7. Diffractograms for ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal 1b , (p-DITFB) ⁻ 2(DMAP)
Figure S8. ¹³ C solid-state NMR spectra of XB acceptor DMAP in black (lower) and cocrystal 1b , (p-DITFB) ⁻ 2(DMAP) prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N and C-I carbons of DMAP and p-DITFB, respectively. The asterisks denote spinning sidebands
Figure S9. Diffractograms for ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal 2b , (sym-TFTIB) [.] 3(DMAP)
Figure S10. ¹³ C solid-state NMR spectra of XB acceptor DMAP in black (lower) and cocrystal 2b , (sym- TFTIB) ⁻ 3(DMAP) prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N carbons of DMAP, and C-I and C-F carbons of sym-TFTIB. The asterisks denote spinning sidebands
Figure S11. Diffractograms of ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal 1c , 2(p-DITFB) (o-Phe)
Figure S12. ¹³ C solid-state NMR spectra of XB acceptor o-Phe in black (lower) and cocrystal 1c, 2(p-DITFB) (o-Phe) prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N and C-I carbons of o-Phe and p-DITFB, respectively. The asterisks denote spinning sidebands
Figure S15. Diffractograms of ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal 1d , (p-DITFB) (PheDON)

Figure S16. ¹³ C solid-state NMR spectra of XB acceptor o-Phe in black (lower) and cocrystal 1d , (p-DITFB) (PheDO prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N and C-I carbons o PheDON and p-DITER respectively. The asterisks denote spinning sidebands)N))f 517
Figure S17. Diffractograms of ball mill and RAM products, and calculated powder X-ray diffraction pattern for	517
<i>Figure S18.</i> ¹³ C solid-state NMR spectra of XB acceptor o-Phe in black (lower) and cocrystal 2d , (sym-	<i>S18</i>
TFTIB) [·] (PheDON) prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N carbons of PheDON, and C-I and C-F carbons of sym-TFTIB. The asterisks denote spinning sidebands	S18
Figure S19. Diffractograms of ball mill and RAM products and calculated powder X-ray diffraction pattern for cocrystal 1e , (p-DITFB) [·] (DIZFON)	.519
Figure S20. ¹³ C solid-state NMR spectra of XB acceptor o-Phe in black (lower) and cocrystal 1e , (p-DITFB) (DIZFON prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N and C-I carbons o DIZFON and p-DITFB, respectively. The asterisks denote spinning sidebands	N) >f .S20
Figure S21. Diffractograms for ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal 2e , (sym-TFTIB) (DIZFON).	.521
Figure S22. ¹³ C solid-state NMR spectra of XB acceptor DIZFON in black (lower) and cocrystal 2e , (sym-TFTIB) ⁻ (DIZFON) prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N carbons of, and C-I carbons of sym-TFTIB. The asterisks denote spinning sidebands	.521
Table S1. ¹³ C[¹ H] CPMAS solid-state NMR experimental conditions.	S22

1: 1a(i), (p-DITFB)⁻2(TMP)¹:

1-1: RAM mechanochemistry synthesis

241 mg (0.5 mmol) 1,4-diiodotetrafluorobenzene (*p*-DITFB) as halogen bond donor, 82 mg (0.5 mmol) 2,3,5,6-tetramethypyrazine (TMP) as an acceptor, and 260 μ L chloroform were added to a 1-dram glass vial and securely mounted within a lab-built sample holder and positioned on the PharmaRAM 1 resonant acoustic mixer. The sample was oscillated for 50 minutes at an acceleration of 80g.

1.2: Ball milling preparation

The halogen bond donor, *p*-DITFB (241 mg, 0.5 mmol), and the halogen bond acceptor, TMP (82 mg, 0.5 mmol), were combined in a 10 mL stainless steel milling jar, with 50 μ L of chloroform as a liquid additive. Subsequently, ball milling was conducted using a Retsch MM 400 ball mill at a frequency of 30 Hz for 45 minutes at room temperature. The milling process employed two stainless steel grinding balls with a diameter of 5 mm.

Figure S1. Experimental diffractograms for ball milled and RAM products, and calculated diffractogram for cocrystal **1a(i)**, (*p*-DITFB)²(TMP).

1-3: ¹³C CP/MAS SSNMR results

Figure S2. ¹³C solid-state NMR spectra of cocrystal 1a(i), (*p*-DITFB).2(TMP): the ball mill product is depicted in blue (lower); RAM product in red (upper). The labels denote the C-N and C-I carbons of TMP and *p*-DITFB, respectively. The asterisks denote spinning sidebands.

2: 1a(ii), 4(p-DITFB)^{-1.5}(TMP)²

2.1: RAM mechanochemistry synthesis

402 mg (1 mmol) 1,4-diiodotetrafluorobenzene (p-DITFB) as halogen bond donor and 68 mg (0.5 mmol) 2,3,5,6-tetramethypyrazine (TMP) as an acceptor were added to a 1-dram glass vial and securely mounted within a lab-built sample holder and positioned on the PharmaRAM 1 resonant acoustic mixer. The sample was oscillated for 45 minutes at an acceleration of 80g.

Figure S3. Diffractogram for the RAM product, and calculated diffractogram for cocrystal **1a(ii)**, 4(*p*-DITFB)^{-1.5}(TMP).

2.3: ¹³C CP/MAS SSNMR results

Figure S4. ¹³C solid-state NMR spectra of XB acceptor TMP in black (lower) and cocrystal **1a(ii)**, 4(*p*-DITFB) 1.5(TMP), prepared by RAM in red (upper). The labels denote the C-N and C-I carbons of TMP and *p*-DITFB, respectively. The asterisks denote spinning sidebands.

3: 2a, (*sym*-TFTIB)[·](TMP)³

3.1: RAM mechanochemistry synthesis

357 mg (0.7 mmol) 1,3,5-trifluoro-2,4,6-triiodobenzene (*sym*-FTIB) as halogen bond donor, 95 mg (0.7 mmol) 2,3,5,6-tetramethypyrazine (TMP) as an acceptor, and 45 μ L THF were added to a 1-dram glass vial and securely mounted within a lab-built sample holder and positioned on the PharmaRAM 1 resonant acoustic mixer. The sample was oscillated for 50 minutes at an acceleration of 80g.

3.2: Ball milling preparation

The halogen bond donor, *sym*-TFTIB (357 mg, 0.7 mmol), and the halogen bond acceptor, TMP (95 mg, 0.7 mmol), were combined in a 10 mL stainless steel milling jar, supplemented with 23 μ L of THF as a liquid additive. Subsequently, ball milling was conducted using a Retsch MM 400 ball mill at a frequency of 30 Hz for 40 minutes at room temperature. The milling process employed two stainless steel grinding balls with a diameter of 5 mm.

3.3: PXRD results

Figure S5. Diffractograms for ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal 2a, (*sym*-TFTIB) (TMP).

3.4: ¹³C CP/MAS SSNMR results

Figure S6. ¹³C solid-state NMR spectra of XB acceptor TMP in black (lower) and cocrystal **2a**, (*sym*-TFTIB) (TMP), prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N carbons of TMP, and C-I and C-F carbons of *sym*-TFTIB. The asterisks denote spinning sidebands.

4: 1b, (*p*-DITFB)²(DMAP)⁴

4.1: RAM mechanochemistry synthesis

321 mg (0.8 mmol) 1,4-diiodotetrafluorobenzene (p-DITFB) as halogen bond donor and 196 mg (1.6 mmol) 4-dimethylaminopyridine (DMAP) as an acceptor were added to a 1-dram glass vial and securely mounted within a lab-built sample holder and positioned on the PharmaRAM 1 resonant acoustic mixer. The sample was oscillated for 45 minutes at an acceleration of 80g.

4.2: Ball milling preparation

The halogen bond donor, *p*-DITFB (321 mg, 0.8 mmol), and the halogen bond acceptor, DMAP (196 mg, 1.6 mmol), were combined in a 10 mL stainless steel milling jar. Subsequently, ball milling was conducted using a Retsch MM 400 ball mill at a frequency of 30 Hz for 30 minutes at room temperature. The milling process employed two stainless steel grinding balls with a diameter of 5 mm.

Figure S7. Diffractograms for ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal **1b**, (*p*-DITFB)²(DMAP).

4.4: ¹³C CP/MAS SSNMR results

Figure S8. ¹³C solid-state NMR spectra of XB acceptor DMAP in black (lower) and cocrystal **1b**, $(p\text{-DITFB})^2(\text{DMAP})$ prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N and C-I carbons of DMAP and *p*-DITFB, respectively. The asterisks denote spinning sidebands.

5: 2b, (sym-TFTIB) 3(DMAP)⁵

5.1: RAM mechanochemistry synthesis

255 mg (0.5 mmol) 1,3,5-trifluoro-2,4,6-triiodobenzene (*sym*-TFTIB) as halogen bond donor and 183 mg (1.5 mmol) 4-dimethylaminopyridine (DMAP) as an acceptor were added to a 1-dram glass vial and securely mounted within a lab-built sample holder and positioned on the PharmaRAM 1 resonant acoustic mixer. The sample was oscillated for 50 minutes at an acceleration of 80g.

5.2: Ball milling preparation

The halogen bond donor, *sym*-TFTIB (255 mg, 0.5 mmol), and the halogen bond acceptor, DMAP (183 mg, 1.5 mmol), were added to a 10 mL stainless steel milling jar. Subsequently, ball milling was conducted using a Retsch MM 400 ball mill at a frequency of 30 Hz for 45 minutes at room temperature. The milling process employed two stainless steel grinding balls with a diameter of 5 mm.

Figure S9. Diffractograms for ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal 2b, (*sym*-TFTIB)⁻3(DMAP).

Figure S10. ¹³C solid-state NMR spectra of XB acceptor DMAP in black (lower) and cocrystal **2b**, (*sym*-TFTIB)⁻³(DMAP) prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N carbons of DMAP, and C-I and C-F carbons of *sym*-TFTIB. The asterisks denote spinning sidebands.

6: 1c, 2(*p*-DITFB).(o-Phe)¹

6.1: RAM mechanochemistry synthesis

321 mg (0.8 mmol) 1,4-diiodotetrafluorobenzene (*p*-DITFB) as halogen bond donor, 196 mg (1.6 mmol) 1,10-phenanthroline (o-Ph) as acceptor, and 35 μ L chloroform were added were added to a 1-dram glass vial and securely mounted within a lab-built sample holder and positioned on the PharmaRAM 1 resonant acoustic mixer. The sample was oscillated for 50 minutes at an acceleration of 80g.

6.2: Ball milling preparation

The halogen bond donor, *p*-DITFB (241 mg, 0.6 mmol), and the halogen bond acceptor, o-Ph (108 mg, 0.6 mmol), were combined in a 10 mL stainless steel milling jar, supplemented with 18 μ L of chloroform as a liquid additive. Subsequently, ball milling was conducted using a Retsch MM 400 ball mill at a frequency of 30 Hz for 45 minutes at room temperature. The milling process employed two stainless steel grinding balls with a diameter of 5 mm.

Figure S11. Diffractograms of ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal **1c**, 2(*p*-DITFB) (o-Phe).

6.4: ¹³C CP/MAS SSNMR results

Figure S12. ¹³C solid-state NMR spectra of XB acceptor o-Phe in black (lower) and cocrystal **1c**, 2(p-DITFB) (o-Phe) prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N and C-I carbons of o-Phe and *p*-DITFB, respectively. The asterisks denote spinning sidebands.

7: 2c, (*sym*-TFTIB)[·](o-Phe)³

7.1: RAM mechanochemistry synthesis

255 mg (0.5 mmol) 1,3,5-trifluoro-2,4,6-triiodobenzene (*sym*-TFTIB) as halogen bond donor, 90 mg (0.5 mmol) 1,10-phenanthroline (o-Ph) as acceptor, and 35 μ L THF were added were added to a 1-dram glass vial and securely mounted within a lab-built sample holder and positioned on the PharmaRAM 1 resonant acoustic mixer. The sample was oscillated for 50 minutes at an acceleration of 80g.

7.2: Ball milling preparation

The halogen bond donor, *sym*-TFTIB (255 mg, 0.5 mmol), and the halogen bond acceptor, o-Ph (90 mg, 0.5 mmol), were combined in a 10 mL stainless steel milling jar, supplemented with 18 μ L of chloroform as a liquid additive. Subsequently, ball milling was conducted using a Retsch MM 400 ball mill at a frequency of 30 Hz for 45 minutes at room temperature. The milling process employed two stainless steel grinding balls with a diameter of 5 mm.

7.3: PXRD results

Figure S13. Diffractograms of ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal 2c, (*sym*-TFTIB) (o-Phe).

7.4: ¹³C CP/MAS SSNMR results

Figure S14. ¹³C solid-state NMR spectra of XB acceptor o-Phe in black (lower) and cocrystal **2c**, (*sym*-TFTIB).(o-Phe) prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N carbons of o-Phe, and C-I and C-F carbons of *sym*-TFTIB. The asterisks denote spinning sidebands.

8: 1d, (p-DITFB) (PheDON)⁶

8.1: RAM mechanochemistry synthesis

205 mg (0.5 mmol) 1,4-diiodotetrafluorobenzene (*p*-DITFB) as halogen bon donor, 105 mg (0.5 mmol) 1,10-phenanthroline-5,6-dione (PheDON) as acceptor, and 155 μ L chloroform were added were added to a 1-dram glass vial and securely mounted within a lab-built sample holder and positioned on the PharmaRAM 1 resonant acoustic mixer. The sample was oscillated for 50 minutes at an acceleration of 80g.

8.2: Ball milling preparation

The halogen bond donor, *p*-DITFB (205 mg, 0.5 mmol), and the halogen bond acceptor, PheDON (105 mg, 0.5 mmol), were combined in a 10 mL stainless steel milling jar, supplemented with 31 μ L of chloroform as a liquid additive. Subsequently, ball milling was conducted using a Retsch MM 400 ball mill at a frequency of 30 Hz for 30 minutes at room temperature. The milling process employed two stainless steel grinding balls with a diameter of 5 mm.

Figure S15. Diffractograms of ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal **1d**, (*p*-DITFB) (PheDON).

8.4: ¹³C CP/MAS SSNMR results

Figure S16. ¹³C solid-state NMR spectra of XB acceptor o-Phe in black (lower) and cocrystal **1d**, (p-DITFB) (PheDON) prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N and C-I carbons of PheDON and *p*-DITFB, respectively. The asterisks denote spinning sidebands.

9: 2d, (sym-TFTIB) (PheDON)

9.1: RAM mechanochemistry synthesis

205 mg (0.5 mmol) 1,3,5-trifluoro-2,4,6-triiodobenzene (*sym*-TFTIB) as halogen bond donor, 105 mg (0.5 mmol) 1,10-phenanthroline-5,6-dione (PheDON) as acceptor, and 250 μ L chloroform were added were added to a 1-dram glass vial and securely mounted within a lab-built sample holder and positioned on the PharmaRAM 1 resonant acoustic mixer. The sample was oscillated for 50 minutes at an acceleration of 80g.

9.2: Ball milling preparation

The halogen bond donor, *sym*-TFTIB (205 mg, 0.5 mmol), and the halogen bond acceptor, PheDON (105 mg, 0.5 mmol), were combined in a 10 mL stainless steel milling jar, supplemented with 31 μ L of chloroform as a liquid additive. Subsequently, ball milling was conducted using a Retsch MM 400 ball mill at a frequency of 30 Hz for 45 minutes at room temperature. The milling process employed two stainless steel grinding balls with a diameter of 5 mm.

9.3: Crystal preparation by slow evaporation:

The halogen bond donor, *sym*-TFTIB (76 mg, 0.15 mmol), was dissolved in 2 mL of chloroform. The halogen bond acceptor, PheDON (32 mg, 0.15 mmol), was dissolved in 2mL of chloroform. The donor solution was added dropwise to the halogen bond acceptor solution. The solvent was allowed to gradually evaporate at room temperature, resulting in the formation of orange cocrystals of **2d**. The vial was tightly sealed as soon as single cocrystals were observed by eye.

9.4: PXRD results

Figure S17. Diffractograms of ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal 2d, (*sym*-TFTIB) (PheDON).

9.5: ¹³C CP/MAS SSNMR results

Figure S18. ¹³C solid-state NMR spectra of XB acceptor o-Phe in black (lower) and cocrystal **2d**, (*sym*-TFTIB) (PheDON) prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N carbons of PheDON, and C-I and C-F carbons of *sym*-TFTIB. The asterisks denote spinning sidebands.

10: 1e, (*p*-DITFB) (DIZFON)⁶

10.1: RAM mechanochemistry synthesis:

205 mg (0.5 mmol) 1,4-diiodotetrafluorobenzene (*p*-DITFB) as halogen bond donor, 91 mg (0.5 mmol) 4,5-diazafluoren-9-one (DIZFON) as acceptor, and 150 μ L THF were added were added to a 1-dram glass vial and securely mounted within a lab-built sample holder and positioned on the PharmaRAM 1 resonant acoustic mixer. The sample was oscillated for 50 minutes at an acceleration of 80g.

10.2: Ball milling preparation

The halogen bond donor, *p*-DITFB (205 mg, 0.5 mmol), and the halogen bond acceptor, DIZFON (91 mg, 0.5 mmol), were combined in a 10 mL stainless steel milling jar, supplemented with 30 μ L of chloroform as a liquid additive. Subsequently, ball milling was conducted using a Retsch MM 400 ball mill at a frequency of 30 Hz for 30 minutes at room temperature. The milling process employed two stainless steel grinding balls with a diameter of 5 mm.

Figure S19. Diffractograms of ball mill and RAM products and calculated powder X-ray diffraction pattern for cocrystal **1e**, (*p*-DITFB) (DIZFON).

Figure S20. ¹³C solid-state NMR spectra of XB acceptor o-Phe in black (lower) and cocrystal **1e**, (p-DITFB) (DIZFON) prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N and C-I carbons of DIZFON and *p*-DITFB, respectively. The asterisks denote spinning sidebands.

11: 2e, (sym-TFTIB) (DIZFON)

11.1: RAM mechanochemistry synthesis

255 mg (0.5 mmol) 1,3,5-trifluoro-2,4,6-triiodobenzene (*sym*-TFTIB) as halogen bond donor, 94 mg (0.5 mmol) 4,5-diazafluoren-9-one (DIZFON) as acceptor, and 223 μ L THF were added were added to a 1-dram glass vial and securely mounted within a lab-built sample holder and positioned on the PharmaRAM 1 resonant acoustic mixer. The sample was oscillated for 50 minutes at an acceleration of 80g.

11.2: Ball milling preparation

The halogen bond donor, *sym*-TFTIB (255 mg, 0.5 mmol), and the halogen bond acceptor, DIZFON (94 mg, 0.5 mmol), were combined in a 10 mL stainless steel milling jar, supplemented with 32 μ L of chloroform as a liquid additive. Subsequently, ball milling was conducted using a Retsch MM 400 ball mill at a frequency of 30 Hz for 45 minutes at room temperature. The milling process employed two stainless steel grinding balls with a diameter of 5 mm.

11.3: Crystal preparation by slow evaporation

The halogen bond donor, *sym*-TFTIB (76 mg), was dissolved in 2 mL of chloroform. The halogen bond acceptor, DIZFON (27 mg), was dissolved in 2 mL of chloroform. The donor solution was added dropwise to the acceptor solution. The solvent was allowed to gradually evaporate at room temperature, resulting in the formation of yellow cocrystals of **2e**. The vial was tightly sealed as soon as single cocrystals were observed by eye.

Figure S21. Diffractograms for ball mill and RAM products, and calculated powder X-ray diffraction pattern for cocrystal 2e, (*sym*-TFTIB) (DIZFON).

11.5: ¹³C CP/MAS SSNMR results

Figure S22. ¹³C solid-state NMR spectra of XB acceptor DIZFON in black (lower) and cocrystal **2e**, (*sym*-TFTIB) (DIZFON) prepared by ball milling in blue (middle), and by RAM in red (upper). The labels denote the C-N carbons of, and C-I carbons of sym-TFTIB. The asterisks denote spinning sidebands.

compound	number of scans	recycle delay / s	MAS frequency / kHz
a	2048	2	10
1a(i)	1024	30	11
1a(ii)	1024	30	11
2a	1024	30	11
b	2048	30	10
1b	1024	30	12
2b	1024	40	11
c	1024	60	4.5
1c	1024	60	12
2c	1024	90	12
d	512	100	11
1d	2048	30	11
2d	2048	40	12
e	1024	120	11
1e	1024	120	11
2e	1024	80	11

 Table S1. ¹³C[¹H] CPMAS solid-state NMR experimental conditions.

Additional Details on Single-Crystal X-Ray Diffraction for 2d and 2e

Raw data collection and processing were executed utilizing the ApexIII software package developed by Bruker.⁷ Initial unit cell parameters were deduced from 36 data frames obtained from specific $\boldsymbol{\omega}$ scans. Semi-empirical absorption corrections, based on equivalent reflections, were applied as part of the data processing.⁸ The systematic absences observed in the diffraction dataset and the unit cell parameters were in line with the assigned space group.

Initial structural solutions were established employing ShelxT direct methods⁹ and subsequently refined using full-matrix least-squares procedures based on F² with the assistance of ShelXL and ShelXle software.¹⁰ Hydrogen atom positions were determined based on geometric considerations and further refined using a riding model.

The structure of **2d** (which contains 8 sets of crystallographically unique molecule pairs stacked in layers) is noteworthy as the difference map shows the presence of whole molecule disorder among some of the layers over a mirror plane. Attempts were made to model this behaviour both from a twinning or supercell standpoint, and through modelling of the disorder directly. In the former case, use of RLatt, cell_now, and other twin detection tools did not convincingly show the presence of any twinning. When disorder was modelled directly, the R value and general quality of the structure did not improve, the disorder fraction remained small, and it served only to muddy the interpretation of the structure. Thus the potential disorder was not included in the final model.

References

- J. L. Syssa-Magalé, K. Boubekeur and B. Schöllhorn, J. Mol. Struct., 2005, 737, 103–107.
- 2 P. M. J. Szell, S. A. Gabriel, E. Caron-Poulin, O. Jeannin, M. Fourmigué and D. L. Bryce, *Cryst. Growth. Des.*, 2018, **18**, 6227–6238.
- 3 P. M. J. Szell, S. A. Gabriel, R. D. D. Gill, S. Y. H. Wan, B. Gabidullin and D. L. Bryce, *Acta Cryst. C*, 2017, **73**, 157–167.
- 4 R. Wang, D. Hartnick and U. Englert, Z. Kristallogr., 2018, 233, 733–744.
- 5 L. C. Roper, C. Präsang, V. N. Kozhevnikov, A. C. Whitwood, P. B. Karadakov and D. W. Bruce, *Cryst. Growth Des.*, 2010, **10**, 3710–3720.
- 6 B. Ji, W. Wang, D. Deng and Y. Zhang, *Cryst. Growth Des.*, 2011, **11**, 3622–3628.
- 7 Bruker, APEX3 Software Suite (version 218.7-2), Bruker AXS Inc. Madison Wisconsin USA, 2018.
- 8 R. H. Blessing, *Acta Cryst. A*, 1995, **51**, 33–38.
- 9 G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112–122.
- 10 C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Crystallogr., 2011, 44, 1281–1284.