Supporting Information

Additive manufacturing of eco-friendly building insulation materials by recycling pulp and paper

Meng-Lun Lee,^{a, #} Arpita Sarkar,^{a, #} Zipeng Guo,^b Chi Zhou,^b Jason N. Armstrong ^a and Shenqiang Ren ^{a,c,d,*}

^a Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA

^b Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA

^c Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA

^d Research and Education in Energy, Environment & Water (RENEW), University at Buffalo, The State University of New York, Buffalo, NY 14260, USA

* shenren@buffalo.edu

[#]Equal Contribution

Fig. S1 Optical images of the fiber-aerogel composite prepared from (a) in-situ and (b) physical mixing method.

Fig. S2 (a) Fiber-aerogel slurry, (b) paper-making method and (c) ambient pressure drying with fixtures.

Fig. S3 Optical Images of composites prepared from in situ method with aerogel wt% (a) 10 % (b) 15% (c) 20 % (d) 30 %.

Fig. S4 Optical Images of composites prepared from physical mixing method with aerogel wt% (a) 10 % (b) 15 % (c) 20 % (d) 30 %.

Fig. S5 SEM images of cellulose-aerogel composites with aerogel wt% (a) 10% and (b) 50 % prepared by using in situ method.

Fig. S6 SEM images of cellulose-aerogel composites with aerogel wt% (a) 10% and (b) 50 % prepared by using the physical mixing method.

Fig. S7 Compression modulus vs aerogel (wt %) plot of composites prepared in situ and physical mixing methods.

Fig. S8 The water contact angle for (a) without and (b) with hydrophobic tri-cholo silane coated cellulose reinforced aerogel composite, (c) Humidity-dependent thermal insulation characteristics of nanocomposites.

Table S1. Comparison of thermal conductivity of synthesized materials with other reported materials.

Materials	Thermal Conductivity (mW/m.k)	References
Silica/cellulose hybrid aerogels	0.040	1
CNF/AlOOH aerogel	0.039	2
Nanofibrillated cellulose/graphene films	0.042	3
Ag ₂ O/Nanofibrillated cellulose aerogels	0.072	4
Cellulose/aerogel composite from recycled cellulose	0.034	This work

References:

1. J. Feng, D. Le, S.T. Nguyen, V. T. C. Nien, D. Jewell, H.M. Duong, Colloids Surf. Physicochem.

Eng. Asp. 2016, 506, 298-305.

2. B. Fan, S. Chen, Q.Yao, Q. Sun, C. Jin, *Materials*, 2017, 10, 311.

3. N. Song, D. Jiao, S. Cui, X. Hou, P. Ding, L. Shi, ACS Appl. Mater. Interfaces, 2017, 9, 2924-2932.

4. N. Song, D. Jiao, P. Ding, S. Cui, S. Tang, L. Shi, J. Mater. Chem. C, 2016, 4, 305-314.