Supporting Information

Non-volatile resistive switching mechanism in single-layer MoS₂ memristors: Insights from ab initio modelling of Au and MoS₂ interfaces

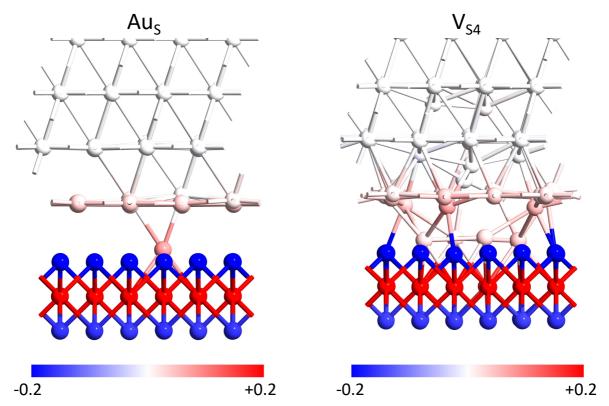
Gabriele Boschetto,¹ Stefania Carapezzi¹, and Aida Todri-Sanial^{1,2}

¹Laboratory of Computer Science, Robotics, and Microelectronics, University of Montpellier, CNRS, 161 Rue Ada, 34095 Montpellier, France

²Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, Netherlands

E-mail: gabriele.boschetto@lirmm.fr; aida.todri@lirmm.fr

1. Stability of defects in free-standing MoS₂


We assessed the effect of S vacancies, Au substitution, and different combinations of both on free-standing monolayer MoS_2 by computing formation energies of selected defects.

Defect	E _F [MoS ₂] (eV)	$E_F[V_S]$ (eV)
Vs	2.75	-
V_{S2}^{A}	5.45	2.69
V_{S2}^{P}	5.48	2.73
Aus	3.48	0.72
$Au2_{S2}^A$	7.27	4.52
$Au2_{S2}^{P}$	6.64	3.88

Table S1. Formation energies of selected defects in free-standing MoS₂.

The structural stability of defects can be assessed by computing their formation energies (see Table S1). To compute such a quantity, we considered two cases: i) a defect-free MoS₂, and ii) a MoS₂ sample with a V_S density of ~2%, in line with typical defect densities found in CVD-MoS₂. Formation energies computed with the latter approach ($E_F[V_S]$) give us an estimate of how likely it is to generate new S vacancies (and Au to fill such vacancies) when the material is already defective, as it is the case in MoS₂ nanodevices. Formation energies computed with defect-free MoS₂ ($E_F[MoS_2]$) confirmed that V_S is the most thermodynamically stable defect ($E_F[MoS_2] = 2.75 \text{ eV}$), in accordance with previous studies. Additionally, it is worth noting that $E_F[MoS_2]$ for two infinitely separated S vacancies, which suggests the slight tendency of V_S to form clusters. We also found that Au_S has a higher $E_F[MoS_2]$ (3.48 eV) than a simple S vacancy, which is the outcome of both the removal of an S atom and the addition of an Au atom from/to the defect-free MoS₂. We could also observe the tendency of Au atoms to cluster in-plane rather than axially. When considering the material with a V_S density of ~2%, we were able to confirm that additional S vacancies are slightly more likely to form in the proximity of

an already existing vacancy. Indeed, $E_F[V_S]$ for one additional S vacancy is slightly lower than $E_F[MoS_2]$ for the single S vacancy. Moreover, we found that the formation energy of Au_S significantly decreases ($E_F[V_S] = 0.72$ eV), making this the most energetically favourable defect. Once again, we found that Au atoms tend form small clusters in-plane rather than axially out-of-plane.

2. Partial Charges of Selected Interfaces

Figure S1. Mulliken population analysis of Au_s and V_{s4} interfaces. Negative partial charges are in blue, whereas positive partial charges in red.