Supporting Information

Electrospun Single-Phase Spinel Magnetic High Entropy Oxide Nanoparticles via Low-Temperature Ambient Annealing

Xiao Han¹, Dian Li², Jingyi Zhou³, Yufeng Zheng², Lingyan Kong³, Lin Li⁴, Feng Yan^{4,*}

¹Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA

²Department of Chemical and Materials Engineering, University of Nevada Reno, Reno, NV 89557 USA

³Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA

4. Materials Science Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287

Supporting Table 1. Solubility of nitrate salt precursors. (Reference: chemister.ru Database)

Salt Precursors	Solubility Information	Decomposition Temp, °C
Fe(NO ₃) ₃	Soluble in water, alcohol, acetone.	141
$Co(NO_3)_2$	Soluble in water, alcohol, acetone and ammonia.	224
Ni(NO ₃) ₂	Soluble in ethanol, slightly soluble in acetone.	298
Cr(NO ₃) ₃	Soluble in water, acetone and ethanol.	155
Cu(NO ₃) ₂	Soluble in water, ethanol, ammonia.	175
Mg(NO ₃) ₂	Soluble in water, acid and alkali, ethanol, acetone.	435
$Zn(NO_3)_2$	Soluble in water and alcohol.	244
Mn(NO ₃) ₂	Soluble in water, ethanol, acetonitrile, tetrahydrofuran and ammonia.	180

^{*} Corresponding Author: fengyan@asu.edu

Supporting Figure 1. Digital photographs of CA solution and salt precursor solution including from 3 metal elements to 8 metal elements.

Supporting Table 2. Summary of calculated entropy of HEO NPs including from 3 metal elements to 8 mental elements.

Nanoparticles	Entropy
CoNiCr-O	1.187R
FeCoNiCr-O	1.247R
FeCoNiCrCu-O	1.432R
FeCoNiCrCuMg-O	1.662R
FeCoNiCrCuMgZn-O	1.823R
FeCoNiCrCuMgZnMn-O	2.012R

Simple-lattice model of configurational entropy in solid-solution model:

$$S_{SS}^{config} = -R \sum_{i} X_{i} ln^{i}(X_{i})$$

where X_i is the mole fraction of each element.

Simple definition:

$$S_{SS}^{config} = -Rln(n)$$

where n is the number of components in the system.

 X_i in the following calculations is from the EDS data.

3-HEO:

$$S_{SS}^{config} = -R \sum_{i} X_{i} \ln (X_{i}) = -R [0.1553 \times \ln (0.1553) + 0.1496 \times \ln (0.1496) + 0.1483 \times \ln (0.1496)] = 1.187R$$

4-HEO:

$$S_{SS}^{config} = -R \sum_{i} X_{i} \ln (X_{i}) = -R [0.1211 \times \ln (0.1211) + 0.1228 \times \ln (0.1228) + 0.1193 \times \ln (0.1247R)]$$

5-HEO:

$$S_{SS}^{config} = -R \sum_{i} X_{i} \ln (X_{i}) = -R [0.0636 \times \ln (0.0636) + 0.1027 \times \ln (0.1027) + 0.1057 \times \ln (0.1$$

6-HEO:

$$S_{SS}^{config} = -R \sum_{i} X_{i} \ln (X_{i}) = -R [0.0883 \times \ln (0.0883) + 0.0794 \times \ln (0.0794) + 0.0894 \times \ln (0.0794) = 1.662R$$

7-HEO:

$$=-R\sum_{i} X_{i} \ln (X_{i}) =-R[0.0819 \times \ln (0.0819) + 0.0778 \times \ln (0.0778) + 0.0882 \times \ln (0.0778) + 0.0853 \times \ln (0.0853) + 0.4068 \times \ln (0.4068) = 1.823R$$

8-HEO:

 S^{config}_{SS}

 $S^{config}_{\ SS}$

$$=-R\sum_{i} X_{i} \ln (X_{i}) = -R[0.096 \times \ln (0.096) + 0.088 \times \ln (0.088) + 0.088 \times \ln (0.088) + 0.088 \times \ln (0.088) + 0.065 \times \ln (0.065) + 0.093 \times \ln (0.093) + 0.337 \times \ln (0.337) = 2.012R$$

Supporting Figure 2. SEM of 3-HEO NPs.

Supporting Figure 3. EDS of 3-HEO NPs. (a). EDS mapping of 3-HEO NPs. (b). Elemental composition of 3-HEO NPs. (c). EDS elemental mapping of three individual metal elements and oxygen.

Supporting Figure 4. SEM of 4-HEO NPs.

Supporting Figure 5. EDS of 4-HEO NPs. (a). EDS mapping of 4-HEO NPs. (b). Elemental composition of 4-HEO NPs. (c). EDS elemental mapping of four individual metal elements and oxygen.

Supporting Figure 6. SEM of 5-HEO NPs.

Supporting Figure 7. EDS of 5-HEO NPs. (a). EDS mapping of 5-HEO NPs. (b). Elemental composition of 5-HEO NPs. (c). EDS elemental mapping of all five individual metal elements and oxygen.

Supporting Figure 8. SEM of 6-HEO NPs.

Supporting Figure 9. EDS of 6-HEO NPs. (a). EDS mapping of 6-HEO NPs. (b). Elemental composition of 6-HEO NPs. (c). EDS elemental mapping of all six individual metal elements and oxygen.

Supporting Figure 10. SEM of 7-HEO NPs.

Supporting Figure 11. EDS of 7-HEO NPs. (a). EDS mapping of 7-HEO NPs. (b). Elemental composition of 7-HEO NPs. (c). EDS elemental mapping of all seven individual metal elements and oxygen.

Supporting Figure 12. SEM of 8-HEO NPs.

Supporting Figure 13. XPS analysis of 8-HEO NPs.