1

Supporting Information

Poly (2-Oxazoline)-Based Core Cross-Linked Star Polymers: Synthesis and Drug Delivery Applications

Nedah Alkattan,^{1,2} Noura Alasmael,³ Viko Ladelta,¹ Niveen M. Khashab,^{3*} Nikos

Hadjichristidis1*

¹Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.

²Refining and Petrochemical Technologies Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh 11442, Saudi Arabia.

³Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Table of Figures

Figure S1. ¹ H NMR of the MeOx monomer (500 MHz, CDCl ₃ , 25 °C)2
Figure S2. ¹ H NMR of the PhBisOx monomer (500 MHz, CDCl ₃ , 25 °C)2
Figure S3. ¹ H NMR of the ButOx monomer (500 MHz, CDCl ₃ , 25 °C)
Figure S4. ¹³ C NMR spectrum of (PMeOx) _n -b-P(PhBisOx-cl/co-ButOx)(500 MHz, CDCl ₃ , 25 °C)3
Figure S5. SEC traces for (a) PMeOx (black), unpurified (PMeOx) ₁₀₆ -b-P(PhBisOx-cl/co-
ButOx)(red), and purified (PMeOx) ₁₀₆ -b-P(PhBisOx- <i>cl/co</i> -ButOx)(blue), (DMF, 45 °C, PS
standard)4
Figure S6. (a) DLS traces of (PMeOx) ₄₄ -b-P(PhBisOx- <i>cl/co</i> -ButOx) (black) and (PMeOx) ₁₀₆ -b-
P(PhBisOx-cl/co-ButOx)(red) in water (concentration: 2 mg/mL) and TEM images (b) PMeOx ₄₄ -b-
P(PhBisOx-cl/co-ButOx) and (c) (PMeOx) ₁₀₆ -b-P(PhBisOx-cl/co-ButOx)5
Figure S7. The standard calibration curve for free DOX with different concentrations in water6
Figure S8. In vitro DOX release profile from CCS polymers (a) (PMeOx)44-b-P(PhBisOx-cl/co-
ButOx), (b) (PMeOx) ₅₉ - <i>b</i> -P(PhBisOx- <i>cl/co</i> -ButOx), and (c) (PMeOx) ₆₂ - <i>b</i> -P(PhBisOx- <i>cl/co</i> -ButOx) in
PBS at different pH values at 37°C. The results are presented as average data with SD (n= 2)8
Figure S9. Cell viability of HeLa cells with different concentrations of a series of CCS POxs for 24
h. Error bars are based on SD (n=2)9
Figure S10. Cell viability of HeLa cells with different concentrations of a series of CCS polymers
for 48 h. Error bars are based on SD (n=2)10
Figure S11. Cytotoxicity of DOX-loaded series of CCS POxs and free DOX in Hela cells for 24 h.
(a) (PMeOx) ₄₄ -b-P(PhBisOx- <i>cl/co</i> -ButOx), (b) (PMeOx) ₅₉ -b-P(PhBisOx- <i>cl/co</i> -ButOx), and (c)
(PMeOx) ₆₂ -b-P(PhBisOx-cl/co-ButOx). Error bars are based on SD (n=2)11

Figure S12. Cytotoxicity of DOX-loaded a series of CCS POxs and free DOX in Hela cells for 48 h. (a) (PMeOx)₄₄-*b*-P(PhBisOx-*cl/co*-ButOx), (b) (PMeOx)₅₉-*b*-P(PhBisOx-*cl/co*-ButOx), and (c) (PMeOx)₆₂-*b*-P(PhBisOx-*cl/co*-ButOx). Error bars are based on SD (n=2)......12 **Scheme S1**. Schematic of *in vitro* DOX release from CCS POxs at acidic pH......4

Figure S1. ¹H NMR of the MeOx monomer (500 MHz, CDCl₃, 25 °C).

Figure S2. ¹H NMR of the PhBisOx monomer (500 MHz, CDCl₃, 25 °C).

Figure S3. ¹H NMR of the ButOx monomer (500 MHz, CDCl₃, 25 °C).

CDCl₃, 25 °C).

Figure S5. SEC traces for (a) PMeOx (black), unpurified (PMeOx)₁₀₆-*b*-P(PhBisOx*cl/co*-ButOx)(red), and purified (PMeOx)₁₀₆-*b*-P(PhBisOx-*cl/co*-ButOx)(blue), (DMF, 45 °C, PS standard).

Equation S1. The precursor of the arm percentage.

The relative precursor percentage of the PMeOx arm was calculated from the SEC chromatogram integration method by using the following equation:

 $precursor arm \% = \frac{peak area of unreacted arm}{peak area of unreacted arm + peak area of star polymer} \times 100$

Equation S2. Calculation of Number of Arms in CCS POxs

The average number of arms in the CCS POxs was calculated based on SEC, MDS-SEC, and ¹H NMR analysis of precursor polymers and star polymers. The number of PMeOx arms in CCS (PMeOx)_n-*b*-P(PhBisOx-*cl/co*-ButOx) was estimated by molecular weights of CCS polymer and PMeOx. The purified star polymer was analyzed

4

using (DA-SEC) in DMF to determine the absolute molecular weight ($M_{w, star}$). The average number of arms was calculated using the following equation:

$$N_{arm} = \frac{(M_{w, star} \times arm_{wf})}{M_{n, arm, NMR}}$$

Where, N_{arm}, $M_{w, \text{ star}}$, arm _{wf %}, and $M_{n, \text{ arm}, \text{ NMR}}$ represent the number of arms in CCS polymer, weight averaged molecular weight of CCS polymer measured by MDS-SEC, the weight fraction of PMeOx arms in CCS polymer, and weight averaged molecular weight of PMeOx arms $M_{n, \text{ arm}, \text{ NMR}}$ calculated from NMR, respectively. The weight fraction of PMeOx was calculated as follows:

$$arm_{wf} = \frac{W(PMeOx) \times yield \ of \ CCS \ polymer}{[W(PMeOx) \times yield \ of \ CCS \ polymer + W(PhBisOx) + W \ (ButOx)]}$$

Where, W(PMeOx), W(PhBisOx), and W(ButOx) are the weights of PMeOx, PhBisOx, and ButOx in the reaction solution.

Figure S6. (a) DLS traces of (PMeOx)₄₄-*b*-P(PhBisOx-*cl/co*-ButOx) (black) and (PMeOx)₁₀₆-*b*-P(PhBisOx-*cl/co*-ButOx)(red) in water (concentration: 2 mg/mL) and TEM images (b) PMeOx₄₄-*b*-P(PhBisOx-*cl/co*-ButOx) and (c) (PMeOx)₁₀₆-*b*-P(PhBisOx-*cl/co*-ButOx).

Equation S3. Preparation of calibration Curve.

A series of free DOX solutions in water with known concentrations were used to prepare the calibration curve (Figure S7). The DOX concentration was calculated by the following equation:

Where X is the DOX concentration, and Y is the absorbance from UV-Vis.

Figure S7. The standard calibration curve for free DOX with different concentrations in water.

In vitro DOX release from CCS polymer.

Figure S8. *In vitro* DOX release profile from CCS POxs (a) $(PMeOx)_{44}$ -*b*-P(PhBisOx*cl/co*-ButOx), (b) $(PMeOx)_{59}$ -*b*-P(PhBisOx-*cl/co*-ButOx), and (c) $(PMeOx)_{62}$ -*b*-P(PhBisOx-*cl/co*-ButOx) in PBS at different pH values at 37°C. The results are presented as average data with SD (n= 2).

Figure S9. Cell viability of HeLa cells with different concentrations of a series of CCS POxs for 24 h. Error bars are based on SD (n=2).

Figure S10. Cell viability of HeLa cells with different concentrations of a series of CCS POxs for 48 h. Error bars are based on SD (n=2).

0-

0.1

0.5

1

DOX Concentration µg/mL

4

Figure S11. Cytotoxicity of DOX-loaded series of CCS POxs and free DOX in Hela cells for 24 h. (a) (PMeOx)₄₄-*b*-P(PhBisOx-*cl/co*-ButOx), (b) (PMeOx)₅₉-*b*-P(PhBisOx-*cl/co*-ButOx), and (c) (PMeOx)₆₂-*b*-P(PhBisOx-*cl/co*-ButOx). Error bars are based on SD (n=2).

Figure S12. Cytotoxicity of DOX-loaded a series of CCS POxs and free DOX in Hela cells for 48 h. (a) (PMeOx)₄₄-*b*-P(PhBisOx-*cl/co*-ButOx), (b) (PMeOx)₅₉-*b*-P(PhBisOx-*cl/co*-ButOx), and (c) (PMeOx)₆₂-*b*-P(PhBisOx-*cl/co*-ButOx). Error bars are based on SD (n=2).