Supporting Information

Novel Hexameric Tin Carboxylate Clusters as Efficient Negative-Tone EUV Photoresists: High resolution with Well-Defined Patterns using Low Energy Doses

Ting-An Lin^a, Yan-Ru Wu^a, Po-Hsiung Cheng,^b Tsi-Sheng Gau*^{b,c} Burn-Jeng Lin*,^{b,c}

Po-Wen Chiu*^{b,c} and Rai-Shung Liu^a*

^aFrontier Research Center for Matter Science and Technology, Department of Chemistry, ^bTSMC-NTHU Joint Research Center, ^cDepartment of Electric Engineering, National Tsing-Hua University, Hsinchu, Taiwan, ROC-----------email:rsliu@mx.nthu.edu.tw

Content:

1. SEM images E-beam lithography patterns S	51
2. SEM images EUV lithography patternsS	2
3. Table s1: LWR values for cluster 1	57
4. X-ray crystallographic structures and dataS	57
5. Spectral data of key compoundsS1	.3
5. ¹ H and ¹³ C NMR of key compoundsS1	٤4

Design H Dose	P Design HP = 50 nm	Design HP = 40 nm	Design HP = 30 nm	Design HP = 20 nm
1120 μC/cm ² (Design L/S = 1:1.5	HP = 64 nm	$Hp = 49 \text{ nm} \qquad \frac{3}{7}$	Hp = 40 nm	
1440 μC/cm ² (Design L/S = 1:1)	Hp = 52 nm \overline{T} \overline{T} \overline	Hp = 39 nm	Hp = 31 nm	

1. SEM image of E-beam lithography patterns

Figure S1. SEM images of E-beam lithography patterns for cluster 1; Process parameter: 1.5 wt%, THK = 20.9 nm, Developer: 2-Heptanone 60 s, PEB= 80°C 60 s

Design HP Dose	Design HP = 50 nm	Design HP = 40 nm	Design HP = 30 nm	
(Design L/S = 1:1.25) Dose E= 800 μC/cm ²	HP= 55 nm	HP= 44 nm	HP= 37 nm	
Dose E= 1120 μC/cm ²	HP= 57 nm	HP=44 nm	HP= 35 nm	
Dose E= 1440 μC/cm ²	HP= 57 nm	HP=47 nm	HP= 36 nm	

Figure S2. SEM images of E-beam lithography patterns for cluster **2**; Process parameter: 1.75 wt%, THK = 22.9 nm, Developer: 2-Heptanone 60 s, PEB = 80° C 60 s

2. SEM image of EUV lithography patterns

Figure S3. SEM images of EUV lithography patterns for cluster **1**: HP=50, 35, 25 nm at different dose. Process parameter: 1.5 wt%, THK = 20.9 nm, Developer: 2-Heptanone 60 s, PEB= $80^{\circ}C$ 60 s

Figure S4. SEM images of EUV lithography patterns for cluster **1**: HP=22, 18, 16 nm at different dose. Process parameter: 1.5 wt%, THK = 20.9 nm, Developer: 2-Heptanone 60 s, PEB= $80^{\circ}C$ 60 s

Figure S5. SEM images of EUV lithography patterns for cluster **2**: HP=50, 35, 25 nm at different dose. Process parameter: 1.75 wt%, PAB = 60°C 60s, THK = 22.9 nm, Developer: 2-Heptanone 60 s, No PEB.

Figure S6. SEM images of EUV lithography patterns for cluster 2. HP=22, 18, 16 nm at different dose. Process parameter: 1.75 wt%, PAB = 60° C 60s, THK = 22.9 nm, Developer: 2-Heptanone 60 s, No PEB.

Figure S7. SEM images of EUV lithography patterns for cluster 2, HP=16, 15, 14 nm at different dose. Process parameter: 1.75 wt%, PAB = 60° C 40s, THK = 20.62 nm, Developer: 2-Heptanone 60 s, No PEB.

Figure S8. IR spectra of Sn(vinyl)₄

Figure S9. Spectra of photoresist 2 in which the two regions are plotted on equal Magnitudes.

3. Table S1. LWR values for cluster 1 :

Cluster 1	HP = 18 nm
Dose (mJ/cm ²)	LWR (nm)
79	4.6
89	4.9
99	5.2

The computation is based on a software: see: 1. Mochi, M. Vockenhuber, T. Allenet, Y. Ekinci, *Proc. SPIE*, 2021, **11855**, 1185502

4. X-ray crystallographic structures and data

4.1 Crystal data and X-ray structure of cluster 1 :

Table 1 Crystal data and structure refinement for 220347lt_auto.

Identification code	220347lt_auto
Empirical formula	C ₃₂ H ₅₅ ClO ₁₀ Sn ₃
Formula weight	991.28
Temperature/K	99.99(10)
Crystal system	triclinic

Space group	P-1			
a/Å	12.4749(4)			
b/Å	12.5391(3)			
c/Å	15.0700(4)			
$\alpha/^{\circ}$	90.977(2)			
β/°	104.825(3)			
$\gamma/^{\circ}$	117.675(3)			
Volume/Å ³	1992.54(11)			
Z	2			
$ ho_{calc}g/cm^3$	1.652			
μ/mm^{-1}	15.858			
F(000)	988.0			
Crystal size/mm ³	$0.21\times0.14\times0.06$			
Radiation	Cu Ka ($\lambda = 1.54184$)			
2Θ range for data collection/	^o 6.144 to 145.92			
Index ranges	$\text{-15} \le h \le 14, \text{-13} \le k \le 15, \text{-18} \le l \le 18$			
Reflections collected	26569			
Independent reflections	7521 [$R_{int} = 0.0478, R_{sigma} = 0.0387$]			
Data/restraints/parameters	7521/317/536			
Goodness-of-fit on F ²	1.273			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0592, wR_2 = 0.1713$			
Final R indexes [all data]	$R_1 = 0.0678, wR_2 = 0.1778$			
Largest diff. peak/hole / e Å ⁻³ 1.63/-1.52				

4.3 Crystal data and X-ray structure of cluster 2 :

Table 1. Crystal data and structure refinement for 210753lt_0m_a.

Identification code	210753lt_0m_a	
Empirical formula	C52 H90 Cl2 O20 Sn6	
Formula weight	1818.27	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.7499(9) Å	$\alpha = 67.810(4)^{\circ}$
	b = 13.2738(11) Å	β= 71.148(4)°.
	c = 14.0693(11) Å	$\gamma = 73.030(4)^{\circ}$
Volume	1725.8(3) Å ³	
Z	1	
Density (calculated)	1.750 Mg/m ³	
Absorption coefficient	2.278 mm ⁻¹	
F(000)	896	
Crystal size	$0.23 \text{ x} 0.20 \text{ x} 0.06 \text{ mm}^3$	
Theta range for data collection	1.610 to 26.514°.	
Index ranges	-13<=h<=12, -16<=k<=1	6, -17<=l<=16
Reflections collected	28957	
Independent reflections	7053 [R(int) = 0.0502]	
Completeness to theta = 25.242°	99.6 %	

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7454 and 0.6419
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7053 / 414 / 525
Goodness-of-fit on F ²	1.080
Final R indices [I>2sigma(I)]	R1 = 0.0406, wR2 = 0.1111
R indices (all data)	R1 = 0.0539, wR2 = 0.1288
Extinction coefficient	n/a
Largest diff. peak and hole	1.401 and -1.066 e.Å ⁻³

5. Spectral data of key compounds

5.1 Spectral data for cluster 1 :

Transparent crystal (59%) ; ¹H NMR (400 MHz, CDCl₃) : δ 5.92-5.88 (m, 8H), 5.12-5.07 (m, 16H), 3.12-3.04 (m, 8H), 1.73-1.62 (m, 24H), 1.34-1.32 (m, 12H), 1.24-1.18 (m, 24H), 0.88 (d, *J* = 7.1 Hz, 18H); ¹³C NMR (125 MHz, CDCl₃) : δ 182.7, 181.8, 138.7, 137.9, 137.7, 115.8, 115.4, 115.1, 114.9, 114.5, 114.4, 46.5, 46.5, 46.3, 46.2, 35.6, 35.5, 27.7, 27.5, 27.2, 27.1, 26.7, 26.4, 26.2, 26.1, 25.7, 17.2, 17.0; ¹¹⁹Sn NMR (186 MHz, CDCl₃) : δ -483.9, -522.3, -523.6, -551.1; HRMS (ESI+, m/z) Calcd. For ¹²C₆₄¹H₁₁₀³⁵Cl₂¹⁶O₂₀¹²⁰Sn₆ [M+H]⁺ : 1989.11, found : 1989.87; EA Anal. Calcd. for C₆₄H₁₁₀Cl₂O₂₀Sn₆ : C : 38.77% ; H : 5.59%, found : C : 38.65% ; H : 5.58%.

5.2 Spectral data for cluster 2 :

Transparent crystal (65%); ¹H NMR (500 MHz, CDCl₃) : δ 6.22-5.91 (m, 18H), 2.44-2.24 (m, 8H), 1.72-1.35 (m, 16H), 1.17-1.07 (m, 24H), 0.93-0.85 (m, 24H) ; ¹³C NMR (125 MHz, CDCl₃) : δ 186.0, 185.4, 185.2, 185.1, 184.6, 184.1, 183.5, 145.2, 141.9, 141.1, 140.8, 139.7, 139.3, 138.7, 138.3, 138.1, 136.3, 135.5, 135.1, 134.5, 133.9, 133.5, 133.0, 132.1, 131.8, 131.2, 123.0, 43.9, 43.8, 43.8, 43.6, 40.5, 27.3, 27.2, 27.1, 26.8, 16.9, 16.8, 16.7, 16.5, 11.7, 11.5; ¹¹⁹Sn NMR (186 MHz, CDCl₃) : δ -183.96, -539.25, -542.63, -547.88. HRMS (ESI+, m/z) Calcd. For C₅₂H₉₀Cl₂O₂₀Sn₆ [M+H]⁺: 1823.95, found: 1824.75; EA Anal. Calcd. for C₅₂H₉₀Cl₂O₂₀Sn₆: C: 34.35%; H: 4.99%, found: C: 34.32%; H: 4.94%.

6. ¹H and ¹³C NMR of key compounds

6.1 Spectral data for cluster 1

BRU	KER
Ru	099
Current Data NAME liou EXPNO PROCNO	Parameters 220402.001 5 1
F2 - Acquisit Date2 Time PROBHD_21 FDULPROG TD SOLVENT NS SWH 755 FIDRES_1 AQ OR FIDRES_1 AQ OR TD0 TD0 TD0 TD0 SF01_180 NUC1 NUC1 SF02_500 NUC2 CPDPRG[2 PCPD2 PLW12_00 PLW12_00 PLW12_00 PLW13_00 PLW13_00 PLW13_00	tion Parameters 1220408 2248 h spect 19470_0234 { 2gpg 5536 CDCl3 4096 0 0000.000 Hz 11,444092 Hz 436907 sec 91.01 1.667 usec 6.50 usec 0.01 K 1000000 sec 100.1 K 10000000 sec 119Sn 5.00 usec 0.0000000 W 1.1220006 MHz 11 Waltz16 80.00 usec 50000000 W 2.2148000 W
F2 – Process SI 32 SF 186. WDW SSB 0	ing parameters 2768 5128038 MHz EM

ulaiteliteren utaria distrigation and	antantantantantantantantantanta	hand an an a state of the second s	anjalan fantakan kina anja ki	miting and a second of the sec	allow and a standard a standard a st	ntal contraction and a state of the state of t	in a state of the second
1500	1000	500	0	-500	-1000	-1500	ppm

6.2 Spectral data for cluster 2

Current Data Parameters NAME liou211227.005 EXPNO 5 PROCNO 1

EXPROC 5 PROCNO 1 F2 - Acquisition Parameters Date_20211231 Time 19.28 h INSTRUM spect PROBHD 2119470,0234 (PULPROC 21994 TO 6533 SOLVENT CDC13 NS 4096 DS 0,000 Hz SWH 75000,000 Hz SWH 75000,000 Hz SWH 75000,000 Hz CDC1 1195n P1 15,00 usec D11 0,0000000 sec TO 1 SFO1 1955,1282250 MHz NUC1 1195n P1 15,00 usec PLW 150,000000 W SFO2 500,1520006 MHz NUC2 1H SFO2 29,5500000 W PLW12 0,4509000 W PLW13 0,23148000 W PLW13 0,23148000 W PLW13 0,23148000 W PLW13 0,23148000 W

F2 - Processing parameters SI 32768 SF 186.5128038 MHz WDW EM SSB 0 -539.246 -542.627 -547.881

1500	1000	500	0	-500	-1000	-1500	ppm