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[Supplementary information 1] 

Synthesis of SiO2 NPs and Si NCs@SiOx

Materials. All the chemical reagents were used as received without further purification. 

Tetraethylorthosilicate (TEOS)(Si(OC2H5)4, ≥99.0%), and sodium chloride 

(NaCl)(≥98.0%) were purchased from Sigma-Aldrich. Ethanol (EtOH)(C2H5OH, 99.5 

%), methanol (MeOH)(CH3OH, 99.5%), toluene (99.5%), and acetone were purchased 

from Dae-Jung (South Korea). Hydrochloric acid (HCl, 35.0~37.0%) and ammonium 

hydroxide solution (NH4OH, 25%) were purchased from Duksan (South Korea) and 

Acros Organic, respectively. Magnesium powder was obtained from Hana AMT (South 

Korea). 

Synthesis of Silica Nanoparticles and Oxide coated Silicon Nanocrystals. Silica 

nanoparticles (SiO2 NPs) and oxide coated silicon nanocrystals (Si NCs@SiOx) were 

synthesized by following a literature and our previous report, respectively.1,2 Briefly, 

TEOS (0.05 mol) was dissolved in mixture solvent of MeOH (37.5 mL) and toluene 

(12.5 mL), and then an aqueous mixture containing an ammonium solution (0.8 mL) 

and distilled water (2.1 mL) was added to initiate the sol-gel reaction. The mixture was 

stirred for 12 h at room temperature. After the reaction had been completed, whitish 

precipitates were formed and collected by centrifugation at 12000 rpm for 10 min. The 
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synthesized SiO2 NPs were washed three times with ethanol, distilled water, and 

acetone and then dried at 70 °C in oven. Si NCs@SiOx was synthesized by 

magnesiothermic reduction of silica nanoparticles. The SiO2 NPs (1 g), NaCl (10 g), 

and magnesium powder (0.9 g) were ground manually to give a grayish colored powder, 

and then heated at 670 °C for 15 hours under an argon atmosphere in vacuum furnace. 

The resulting dark brown-colored powder product was washed with distilled water to 

remove NaCl and treated with hydrochloric acid for 6 hours to remove remaining 

magnesium (Mg) powder, magnesium silicide (Mg2Si), and magnesium oxide (MgO). 

Brown precipitates were collected by centrifugation at 12000 rpm for 10 min and 

washed with distilled water until the washings resulted in a neutral pH (ca. 7). Finally, 

the Si NC@SiO2 was obtained after drying at 70 °C. 
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[Supplementary information 2] 

Size Distributions of Si QDs in SQNCs and High-Resolution TEM 

Images of SQNCs
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Figure S1. Count distributions of the Si QDs in (a) SQNC-VPEPV and (b) SQNC-VPV.

Figure S2. High-resolution TEM images of (a) SQNC-VPEPV and (b) SQNC-VPV.
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[Supplementary information 3] 

Voltage Profiles Acquired from GITT Measurements of SQNCs

0.0

0.5

1.0

1.5

0 20 40 60 80 100

Vo
lta

ge
 (V

) v
s. 

L
i/L

i+

SOC (%)

0.0

0.5

1.0

1.5

0 20 40 60 80 100

Vo
lta

ge
 (V

) v
s. 

L
i/L

i+

SOC (%)

0.0

0.5

1.0

1.5

0 20 40 60 80 100

Vo
lta

ge
 (V

) v
s. 

L
i/L

i+

SOC (%)

(a)

(b)

(c)

Figure S3. Voltage profiles of (a) SQNC-VPEPEPV, (b) SQNC-VPEPV, and (c) 

SQNC-VPV in GITT measurements.
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[Supplementary information 4] 

Calculation of Electronic Coupling and Electron Transfer Rate 

between Si QDs in Si QD Dimer

Si QD 
(Donor)

Bridging M Si QD 
(Acceptor)

Figure S4. Structure of the molecule-bridged Si QD dimer.

Method. Through–bond electronic coupling represents the probability amplitude for 

electron transfer from a donor (D) to an acceptor (A) through a bridge (B).3,4 Let us 

consider a D–B–A system to calculate the through–bond electronic coupling between D 

and A (Figure S4). The first step is to perform a Löwdin’s symmetric orthogonalization 

of the Fock matrix (F) for the entire system.5,6 The orthogonalized F matrix ( ) is 𝐹'

expressed as:

𝐹' =  𝑆 ‒ 1/2𝐹𝑆 ‒ 1/2 (1)

where  is the overlap matrix of the entire system in the atomic orbital basis.𝑆
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We partition this matrix into sub-blocks for the D, B, A, and interaction parts as:

𝐹' =  ( 𝐹'𝐷 𝐹'𝐷𝐵 𝐹'𝐷𝐴
𝐹'𝐵𝐷 𝐹'𝐵 𝐹'𝐵𝐴
𝐹'𝐴𝐷 𝐹'𝐴𝐵 𝐹'𝐴

) (2)

The sub-blocks for the D, B, and A parts are then diagonalized to obtain the eigenvalue 

and eigenvector matrices, denoted by  and , respectively: 𝜀' 𝐶'

𝜀'𝐷/𝐵/𝐴 = [ 𝜀𝐷/𝐵/𝐴
1             0

     ⋱         0        
     𝜀𝐷/𝐵/𝐴

𝐻𝑂𝑀𝑂        0   
     0     𝜀𝐷/𝐵/𝐴

𝐿𝑈𝑀𝑂         
    0        ⋱      

0               𝜀𝐷/𝐵/𝐴
𝑛

] (3)

𝐶'𝐷/𝐵/𝐴 = [𝑢𝐷/𝐵/𝐴
𝜀1

 ⋯ 𝑢 𝐷/𝐵/𝐴
𝜀𝐻𝑂𝑀𝑂

 𝑢𝐷/𝐵/𝐴
𝜀𝐿𝑈𝑀𝑂

 ⋯ 𝑢𝐷/𝐵/𝐴
𝜀𝑛

] (4)

The eigenvector  in  corresponds to the eigenvalue  in . The retarded Green’s 𝑢𝑛 𝐶' 𝜀𝑛 𝜀'

function for B evaluated at energy  is given by:7𝐸

𝐺𝑅
𝐵(𝐸) = 𝐶 '

𝐵(𝐸𝐼𝐵 ‒ 𝜀'𝐵) ‒ 1𝐶' †
𝐵 (5)

The through–bond electronic coupling is calculated by: 

𝑇𝐷𝐵𝐴 =  𝑢 𝐷 †
𝜀𝐿𝑈𝑀𝑂

𝐹 '
𝐷𝐵𝐺𝑅

𝐵(𝐸𝑡)𝐹 '
𝐵𝐴 𝑢 𝐴

𝜀𝐿𝑈𝑀𝑂 (6)

where  is the tunneling energy of an electron transferred from  of D to  of A, 𝐸𝑡 𝜀𝐿𝑈𝑀𝑂 𝜀𝐿𝑈𝑀𝑂

and subscript LUMO represents least unoccupied molecular orbital.

The through–space electronic coupling results from the contribution of the direct 

orbital overlapping between D and A to the electronic coupling.4 Let us consider an 

isolated D/A system, which is formed by removing B from the D–B–A system, and the 
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open vacancies are capped with H atoms. The orthogonalized F matrix ( ) of the 𝐹'

isolated D/A system can be partitioned into sub-blocks for the D, A, and interaction 

parts as follows:

𝐹' =  ( 𝐹'𝐷 𝐹'𝐷𝐴
𝐹'𝐴𝐷 𝐹'𝐴 ) (7)

The through–space electronic coupling is calculated by: 

𝑇𝐷 ‒ 𝐴 =  𝑢 𝐷 †
𝜀𝐿𝑈𝑀𝑂

𝐹' 𝑢 𝐴
𝜀𝐿𝑈𝑀𝑂 (8)

where  and  are the eigenvectors corresponding to the LUMO eigenstates 
𝑢 𝐷

𝜀𝐿𝑈𝑀𝑂
𝑢 𝐴

𝜀𝐿𝑈𝑀𝑂

for D and A, respectively. 

The through–bond and through–space electronic couplings were calculated using an 

in-house MATLAB program, which implemented the above formalism developed with 

MATALB R2018b.8 The  and  matrices, used as the inputs of the MATLAB program, 𝐹 𝑆

were calculated using the Gaussian 16W program package.9 Quantum mechanical 

calculations, including geometry optimization, were carried out for the D–B–A systems 

using the density functional theory (DFT) with the standard 6-31G(d,p) basis set. 10-13 

Becke’s three parameter hybrid functional, combined with the Lee–Yang–Parr 

correlation functional (B3-LYP), was used for all the calculations.14-16 The Cartesian 

coordinates for the 1 nm Si QD and the D–B–A models used for the calculations are 

shown in Electronic Supplementary Information (ESI).



S9

The influence of bridge structure manipulation on inter-QD electron transfer rate 

in Si QD dimer. The inter-QD electron transfer rate causes differences between the 

electronic conductivities of the SQNCs. This electron transfer rate is influenced by the 

molecular structure bridging the Si QDs and the surface environment of the Si QDs. To 

investigate the influence of bridge structure manipulation on the inter-QD electron 

transfer rate in the SQNCs, we calculated the rate of electron transfer between the QDs 

in a Si QD (1 nm, -Si35H35) dimer (SQD) bridged by a molecule identical to the SQNC. 

Figure S5(a) shows the structures of the VPEPEPV, VPEPV, and VPV molecule-

bridged SQDs (NOTE: These model systems used to investigate the influence of bridge 

structure manipulation on inter-QD electron transfer rate in the SQNCs do not reflect 

the actual properties of synthesized SQNCs. This is because the surface environment of 

Si QDs does not match reality.). According to the Marcus theory, the rate constant of 

electron transfer in the nonadiabatic regime is represented using Fermi’s golden rule 

expression in the high-temperature classical limit.17,18

𝑊 =  
2𝜋
ℏ

𝑉2( 1
4𝜋𝜆𝑘𝐵𝑇)1/2𝑒𝑥𝑝( ‒

(Δ𝐺0 + 𝜆)2

4𝜆𝑘𝐵𝑇 ) (9)

where  is the electronic coupling,  is the reorganization energy,  is the free-energy 𝑉 𝜆 Δ𝐺0

difference between the two electronic origins,  is the Boltzmann constant, and  is the 𝑘𝐵 𝑇



S10

absolute temperature, as depicted in the model for the energetics of the electron transfer 

reaction in Figure S6.19
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Figure S5. (a) Structures of the VPEPEPV, VPEPV, and VPV molecule-bridged Si QD 

(1 nm, -Si35H35) dimers, and (b) through–bond electronic coupling between the Si QDs 

as a function of the QD interdistance in the VPEPEPV, VPEPV, and VPV molecule-

bridged Si QD dimers.
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Figure S6. Model for the energetics of the electron transfer reaction; two potential 

surfaces (UD and UA) are associated with donor (with ED) and acceptor (with EA) 

electronic states; “q” stands for the nuclear configuration in normal modes.19

Reorganization energy and electronic coupling are the key parameters that govern the 

electron transfer rate. The reorganization energy of the Si QD used as D/A was 

calculated using the method demonstrated in our previous report.19 The electronic 

coupling, which represents the probability amplitude for the transfer of an electron 

through the specified orbital space, in the D–B–A system is given by the sum of the 

through-space ( ) and through–bond ( ) contributions.20 The calculated |𝑇𝐷 ‒ 𝐴| |𝑇𝐷𝐵𝐴|

electronic couplings and bridge-mediated inter-QD electron transfer rates for the SQDs 
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are presented in Table S1, along with the QD interdistances. For all the SQDs, the 

through-space electronic couplings are zero, which is anticipated because the through-

space overlap is extremely small due to the relatively long distance between the Si QDs. 

In contrast, the through–bond electronic couplings range from 10 to 10-4 eV, indicating 

that the Si QDs covalently bridged with the π-conjugated molecule group significantly 

strengthens the coupling.21,22 Therefore, it can be concluded that electronic coupling 

between the Si QDs in the SQDs occurs through the bonds of the organic linkers, and 

the through-space coupling is of negligible importance. Furthermore, the electronic 

coupling is significantly modulated by the nature of the bridging molecule. As shown in 

Figure S5(b), the coupling between the Si QDs strengthens as the length of the bridging 

molecule decreases. 

Table S1. Distance, through–space electronic coupling ( ), through–bond |𝑇𝐷 ‒ 𝐴|

electronic coupling ( ), and electron transfer rate between the Si QDs (1 nm, -|𝑇𝐷𝐵𝐴|

Si35H35) in the VPEPEPV, VPEPV, and VPV molecule-bridged Si QD dimers.

Electronic coupling (eV) Reorganization energy (eV)
QD inter-

distance 

(Å)
|𝑇𝐷 ‒ 𝐴| |𝑇𝐷𝐵𝐴| |𝑇𝐷𝐴| 𝜆𝑁 𝜆𝐶 𝜆𝑡𝑜𝑡𝑎𝑙

Electron 

transfer rate 

at 293.15 K

(s-1)

VPEPEPV 25.1 0.00E+00 8.94E-04 8.94E-04 1.13E-01 1.11E-01 2.24E-01 3.14E+09
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-SQD

VPEPV

-SQD
18.4 0.00E+00 1.18E-01 1.18E-01 5.46E+13

VPV

-SQD
11.4 0.00E+00 2.07E+00 2.07E+00 1.68E+16

[Supplementary information 5] 

Electron Transmission Calculation in a Molecule-Bridged Si QD 
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Dimer System with Excess Electrons Injected into the Left Si QD

To estimate the electronic conductivity as a function of the current density applied 

during the cell operation, we established a novel approach to calculate the electron 

transmission through the molecular bridge in a constant-current mode, based on the 

nonequilibrium Green’s function (NEGF) coupled with the Gaussian broadening of 

discrete states (Figure S7(b)). Here, we term the calculation method based on this 

approach as a “constant-current mode transmission calculation method”. This novel 

approach was developed based on the hypothesis that the number of electrons 

accumulated in the Si QDs of the SQNC during the cell operation depends on the 

applied constant current density, and was realized for a QD dimer system, in which the 

left QD was injected with excess electrons. In addition, the QD dimer system keeps the 

applied voltage at zero in constant current mode except for the excess electrons injected 

into the left Si QD. 

Method. We calculated the electron transmission from the left Si QD (L) to the right 

Si QD (R) through the bridge (B) in the L-B-R system, in which excess electrons were 

injected into L. As evident from Equation 2, the sub-blocks of the orthogonalized Fock 

matrices for the SQDs are used for this calculation. The retarded (advanced) Green’s 

function of the bridge can be expressed as:



S15

𝐺𝑅(𝐴)(𝐸) = [𝐸𝐼𝐵 ‒ 𝐹 '
𝐵 ‒ Σ𝑅/𝐴

𝐿 ‒ Σ𝑅/𝐴
𝑅 ] ‒ 1 (10)

where  and  are the unit and orthogonalized Fock matrices for the bridge, 𝐼𝐵 𝐹 '
𝐵

respectively;  is the self-energy matrix that accounts for the effect of the Si QD on Σ𝐿/𝑅

the bridge, which can also be represented as the linewidth function matrix ( ).25 The Γ𝐿/𝑅

self-energy and linewidth function matrices are: 5

Σ𝑅/𝐴
𝐿/𝑅(𝐸) = 𝜏 +

𝐿/𝑅𝑔𝑅/𝐴
𝐿/𝑅𝜏𝐿/𝑅 (11)

Γ𝐿/𝑅(𝐸) = 𝑖[Σ 𝑅
𝐿/𝑅 ‒ Σ 𝐴

𝐿/𝑅] (12)

where  is the Green’s function of the left/right Si QD and can be calculated using the 𝑔𝐿/𝑅

density of states (DOS) obtained by the Gaussian broadening of discrete states, 

proposed by Tada et al.;5  and  are  and  in Equation 2, respectively.𝜏𝐿 𝜏𝑅 𝐹'𝐷𝐵 𝐹'𝐴𝐵

In general, the electric current flow is given by the Landauer–Büttiker formula:5,24,25

𝐼 =
2𝑒
ℎ

∞

∫
‒ ∞

𝑑𝐸𝑇𝑟[Γ𝐿(𝐸 ‒
𝑒𝑉𝑏

2
)𝐺𝑅(𝐸,𝑉𝑏) × Γ𝑅(𝐸 +

𝑒𝑉𝑏

2
)𝐺𝐴(𝐸,𝑉𝑏)][𝑓(𝐸 ‒ 𝜇𝐿) ‒ 𝑓(𝐸 ‒ 𝜇𝑅)](13)

where  is the Planck constant;  denotes the electron charge;  is an applied bias ℎ 𝑒 𝑉𝑏

voltage;  is the Fermi-distribution function for the electrode;  is electrochemical 𝑓 𝜇𝐿/𝑅

potential of the L/R electrode.

In Equation 13, the current is zero at equilibrium (zero-biased condition) since . It 𝜇𝐿 = 𝜇𝑅

is worth noting that the electrochemical potentials of the lithium ions, which maintain 

equilibrium across all phases (anode, cathode, and electrolyte) of the LIBs, are constant, 
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thereby determining the Fermi levels of the electrode materials. Therefore, the Fermi 

levels of the Si QDs in the SQNC electrodes separated from the conducting polymer by 

the organic molecules will be the same, indicating that it is difficult to apply Equation 

13 to the SQNC systems. This is why we need to find a novel approach to estimate the 

electronic conductivity of the SQNCs. To estimate the electronic conductivity as a 

function of the constant current density applied during the cell operation, we set the 

electric current at a molecular junction as:

𝐼 =
2𝑒
ℎ

∞

∫
𝐸𝑓

𝑑𝐸𝑇𝑟[Γ𝐿(𝐸)𝐺𝑅(𝐸) × Γ𝑅(𝐸)𝐺𝐴(𝐸)]𝑓(𝐸 ‒ 𝐸𝑐𝑢𝑡) =
2𝑒
ℎ

𝑇𝐿𝐼𝐵(𝐸𝑐𝑢𝑡)
(14)

where  is the Fermi level of the R;  is the Fermi level of the L, when a certain 𝐸𝑓 𝐸𝑐𝑢𝑡

number of electrons are injected into L;  is the transmission of the electrons 𝑇𝐿𝐼𝐵(𝐸𝑐𝑢𝑡)

with energies from  to .  can be calculated using the following expression: 𝐸𝑓 𝐸𝑐𝑢𝑡 𝐸𝑐𝑢𝑡

𝑛 =
1
𝜋

𝐸𝑐𝑢𝑡

∫
𝐸𝑓

𝑑𝐸𝐷𝐿(𝐸) (15)

where  is the number of electrons injected into L and is proportional to the constant 𝑛

current density applied during cell operation;  is the broadened DOS of the L. 𝐷𝐿(𝐸)

Electron transmission in a molecule-bridged SQD system with excess electrons 

injected into the left Si QD. The values of  as functions of  are displayed in Figure 𝐸𝑐𝑢𝑡 𝑛

S8. The calculated  values of VPEPEPV, VPEPV, and VPV–SQDs as 𝑇𝐿𝐼𝐵(𝐸𝑐𝑢𝑡)
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functions of  are shown in Figure S7(c) and Table S2. The  value of VPEPV-𝑛 𝑇𝐿𝐼𝐵(𝐸𝑐𝑢𝑡)

SQD at 0.30 eV, corresponding to the energy when one electron is injected into L, is 

approximately five times higher than that of the other SQDs. It is interesting to note that 

the SQD with the highest  varies depending on . When  is less than 12, the  𝑇𝐿𝐼𝐵 𝑛 𝑛 𝑇𝐿𝐼𝐵

values of VPEPV–SQD are higher than those of the other SQDs. However, when  is 𝑛

larger than 12, VPV–SQD exhibits the highest  values, among all the SQDs. This 𝑇𝐿𝐼𝐵

result indicates that the number of electrons accumulated in the anode-active material 

can be modulated depending on the applied current density. To understand, at the 

molecular level, why the SQD with the dominant  differed depending on the number 𝑇𝐿𝐼𝐵

of injected electrons into L, we analyzed the distribution of the DOS for L, B, and R in 

the vicinity of the Fermi level of L. Notably,  for the L-B-R system is mainly 𝑇𝐿𝐼𝐵

determined by the DOS of L, B, and R as well as the coupling strength between them. 

In addition, the transmission through B is greatly enhanced if the conduction electrons 

are injected at energies close to the DOS of B. Figure S7(d) shows the broadened DOS 

profiles of L, B, and R in the vicinity of the Fermi level of L. The DOS profiles of L and 

R for VPEPEPV, VPEPV, and VPV–SQDs are almost identical, suggesting that the 

difference between  of the SQDs is caused by the DOS of B and the coupling 𝑇𝐿𝐼𝐵

strength between B and L/R. Consequently, the -dependent variations of the SQD with 𝑛
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the highest  might be greatly influenced by the difference in the distribution of DOS 𝑇𝐿𝐼𝐵

of the bridging molecules and the coupling strength between B and L/R.
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Figure S7. (a) Schematic representation of the rate capabilities of the SQNC-VPEPEPV, 

SQNC-VPEPV, and SQNC-VPV at various current densities. (b) Schematic 

representation of electron transmission with excess electrons injected into the left 

electrode and (c) calculated electron transmission probabilities for the VPEPEPV, 

VPEPV, and VPV molecule-bridged Si QD (1 nm, Si35H35) dimers as functions of the 

number of electrons injected into left Si QD. (d) Broadened DOS profiles of the left Si 

QD, bridging molecule, and right Si QD for VPEPEPV, VPEPV, and VPV-SQDs in the 
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vicinity of the Fermi level of the Si QD.
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Figure S8. The values of  in the vicinity of the Fermi level of the L as a function of 𝐸𝑐𝑢𝑡

the number of electrons injected into L.

Table S2. The values of  for the VPEPEPV, VPEPV, and VPV-SQDs.𝑇𝐿𝐼𝐵(𝐸𝑐𝑢𝑡)

 (eV)𝑇𝐿𝐼𝐵(𝐸𝑐𝑢𝑡)
𝑛  (eV)𝐸𝑐𝑢𝑡

VPEPEPV-SQD VPEPV-SQD VPV-SQD

1 0.30 0.0073 0.0457 0.0110

2 0.38 0.0445 0.0937 0.0488

3 0.44 0.0728 0.1294 0.0967

4 0.50 0.1238 0.1748 0.1493
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5 0.58 0.186 0.2423 0.2047

6 0.74 0.2191 0.3228 0.2291

7 0.88 0.235 0.3452 0.2324

8 0.94 0.2547 0.3467 0.2476

9 0.98 0.2658 0.3482 0.2724

10 1.02 0.2716 0.3509 0.3066

11 1.04 0.2852 0.3528 0.3252

12 1.08 0.2933 0.3585 0.3634

13 1.10 0.3023 0.3622 0.3829

14 1.12 0.3229 0.3665 0.4024

15 1.16 0.3342 0.3761 0.4418

16 1.18 0.3461 0.3815 0.4615

17 1.22 0.3703 0.3938 0.5004

18 1.26 0.393 0.4086 0.5377

19 1.32 0.4172 0.4339 0.5902

20 1.42 0.4311 0.4675 0.6562

21 1.56 0.4821 0.5187 0.7234

22 1.68 0.5893 0.5697 0.8128



S21

References

S1. D. H. Lee, S. W. Han and D. P. Kang, J. Sol-Gel Sci. Technol., 2015, 74, 78-83.

S2. D. -S. Lee, Y. -H. Choi and H.-D. Jeong, J. Ind, Eng, Chem., 2017, 53, 82-92.

S3. A. Biancardi, S. C. Martin, C. Liss and M. Caricato, J. Chem. Theory Comput., 

2017, 13, 4154–4161.

S4. R. Hoffmann, Acc. Chem. Res., 1971, 4, 1−9.

S5. T. Tada, M. Kondo and K. Yoshizawa, J. Chem. Phys., 2004, 121, 8050−8057.

S6. P.-O. Löwdin, J. Chem. Phys., 1950, 18, 365−375.

S7. J. Jortner and M. Bixon, Electron Transfer—From Isolated Molecules to Bio-

molecules, John Wiley & Sons, New York, 1999.

23 1.78 0.6507 0.5973 0.9073

24 1.86 0.6701 0.6356 0.9832

25 1.92 0.6887 0.6792 1.0357

26 1.96 0.7123 0.7317 1.0677

27 2.02 0.7311 0.7671 1.1138

28 2.06 0.7517 0.8027 1.1444

29 2.10 0.7731 0.8392 1.1748

30 2.14 0.7948 0.8765 1.2038



S22

S8. MATLAB version 9.5.0.1178774 (R2018b), The MathWorks, Inc., Natick MA, 

2018.

S9. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. 

Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, 

H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. 

Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. 

Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. 

Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. 

Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. 

Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. 

Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. 

Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, 

J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. 

Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. 

Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, 

Gaussian, Inc., Wallingford CT, 2016.

S10. P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864.

S11. W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133. 

S12. G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley and 

J. Mantzaris, J. Chem. Phys., 1988, 89, 2193. 

S13. G. A. Petersson and M. A. Al-Laham, J. Chem. Phys., 1991, 94, 6081.

S14. A. D. Becke, J. Chem. Phys., 1993, 98, 5648. 

S15. B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989, 157, 

200−206.



S23

S16. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785−789.

S17. R. A. Marcus and N. Sutin, Angew. Chem. Int. Ed. Engl., 1993, 32, 1111.

S18. P. Siddarth and R. A. Marcus, J. Phys. Chem., 1993, 97, 2400.

S19. Y.-H. Choi, H. Yun and H.-D. Jeong, Bull. Korean. Chem. Soc., 2021, 42, 435–

445.

S20. R. C. Quardokus, Y. Lu, N. A. Wasio, C. S. Lent, F. Justaud, C. Lapinte and S. A. 

Kandel, J. Am. Chem. Soc., 2012, 134, 1710–1714.

S21. T.-H. Le, K.-J. Kim and H.-D. Jeong, J. Phys. Chem. C, 2017, 121, 15957–15969.

S22. T.-H. Le, Y.-H. Choi, K.-J. Kim and H.-D. Jeong, ACS Omega, 2019, 4, 

3133−3145.

S23. M. Smeu and K. Leung, Phys. Chem. Chem. Phys., 2021, 23, 3214–3218.

S24. J. C. Cuevas, A. L. Yeyati and A. Martin-Rodero, Phys. Rev. Lett., 1998, 80, 

1066–1069. 

S25. S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, 

Cambridge, 2005.


