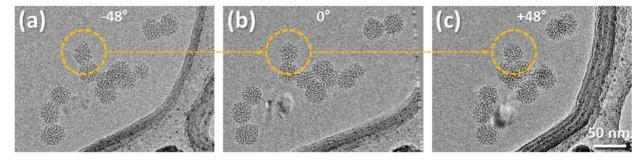
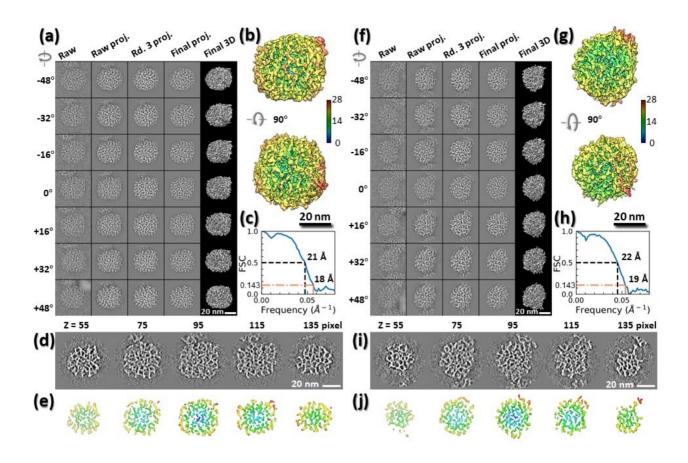
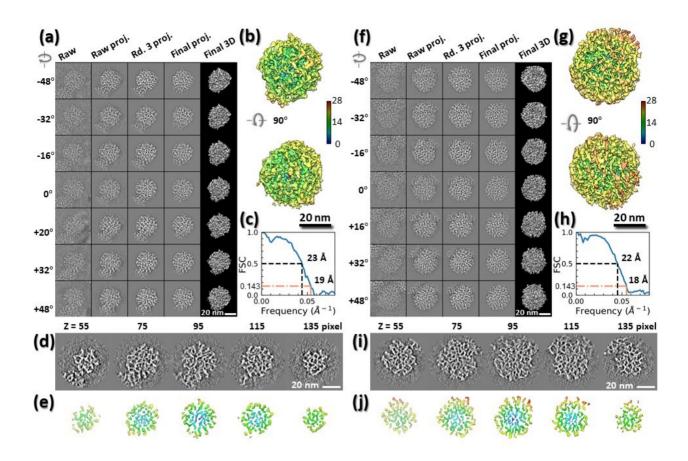
Supporting Information A for

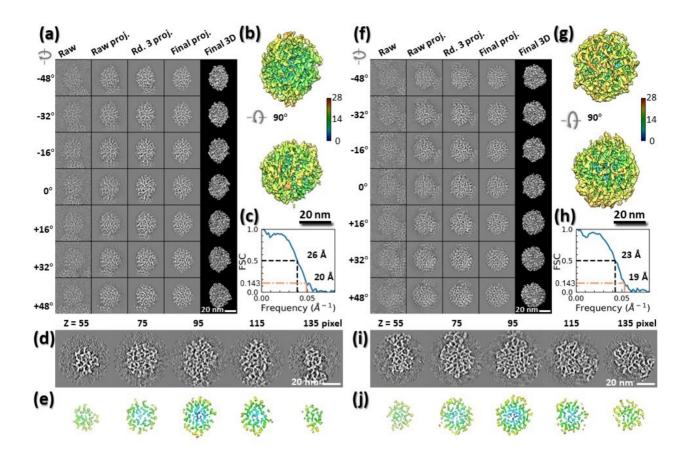
Insights into the 3D connected pore structure within monodisperse mesoporous silica nanoparticles by cryogenic electron tomography

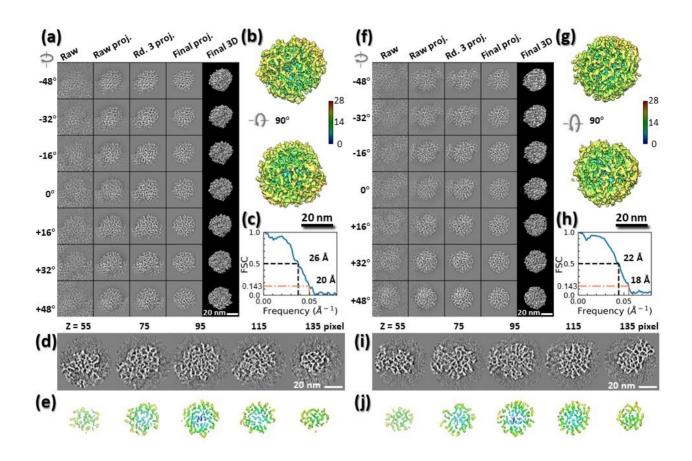
Yidong Xia,*,†,# Jianfang Liu,‡,# Rahul Kancharla,¶ Jiaoyan Li,§ Seyed M. Hatamlee,§ Gang Ren,‡ Viktoriya Semeykina,∥ Ahmed Hamed,⊥ and Joshua J. Kane¶

†Energy and Environment Science & Technology, Idaho National Laboratory, Idaho Falls, ID 83415, USA
‡The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
¶Materials & Fuels Complex, Idaho National Laboratory, Idaho Falls, ID 83415, USA
§Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
∥Department of Chemistry, The University of Utah, Salt Lake City, UT 84112, USA
⊥Energy and Environment Science & Technology, Idaho National Laboratory, Idaho Falls, ID 83415, USA
#These authors contributed equally to this work.

E-mail: yidong.xia@inl.gov


Figure S1. Three representative views of the cryo-ET tilt series of MSNs.


Figure S2. Cryo-ET 3D reconstruction of the 1^{st} and 2^{nd} particle of MSNs by IPET: (a) The process of 3D reconstruction of the 1^{st} particle. Seven representative tilt images of the particle are gradually aligned via an iterative refinement. (b) Final 3D density map was colored by radius; the color bar indicates the distance from the geometry center of particle (unit: nm). (c) The FSC curve shows the resolution of the final 3D map was 18 Å at the criteria of 0.143. (d) The X-Y slices (thickness = 1.7 nm) of the spherical masked 3D map at different Z heights (Box size: X = Y = Z = 192 pixels; 1 pixel = 3.34 Å). (e) The X-Y slices (thickness = 1.7 nm) of the iso-surface rendered final 3D map at different Z heights. (f-j) The process of 3D reconstruction of the 2^{nd} particle. The FSC curve shows the resolution of the final 3D map was 19 Å at the criteria of 0.143.

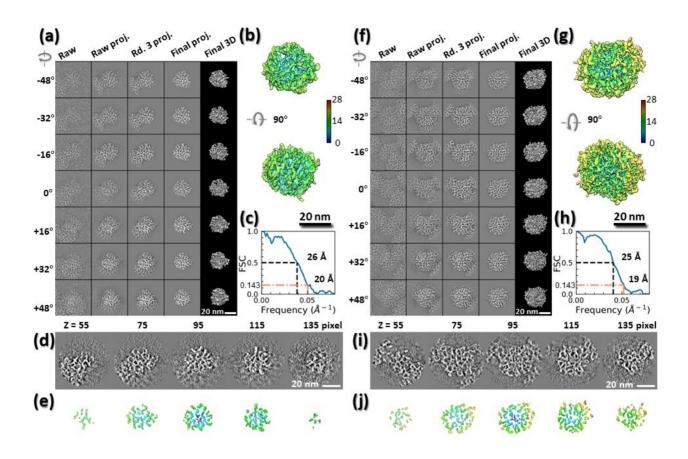

Figure S3. Cryo-ET 3D reconstruction of the 3^{rd} and 4^{th} particle of MSNs by IPET: (a) The process of 3D reconstruction of the 3^{rd} particle. Seven representative tilt images of the particle are gradually aligned via an iterative refinement. (b) Final 3D density map was colored by radius; the color bar indicates the distance from the geometry center of particle (unit: nm). (c) The FSC curve shows the resolution of the final 3D map was 19 Å at the criteria of 0.143. (d) The X-Y slices (thickness = 1.7 nm) of the spherical masked 3D map at different Z heights (Box size: X = Y = Z = 192 pixels, 1 pixel = 3.34 Å). (e) The X-Y slices (thickness = 1.7 nm) of the iso-surface rendered final 3D map at different Z heights. (f-j) The process of 3D reconstruction of the 4^{th} particle. The FSC curve shows the resolution of the final 3D map was 18 Å at the criteria of 0.143.

Figure S4. Cryo-ET 3D reconstruction of the 5^{th} and 6^{th} particle of MSNs by IPET: (a) The process of 3D reconstruction of the 5^{th} particle. Seven representative tilt images of the particle are gradually aligned via an iterative refinement. (b) Final 3D density map was colored by radius; the color bar indicates the distance from the geometry center of particle (unit: nm). (c) The FSC curve shows the resolution of the final 3D map was 20 Å at the criteria of 0.143. (d) The X-Y slices (thickness = 1.7 nm) of the spherical masked 3D map at different Z heights (Box size: X = Y = Z = 192 pixels; 1 pixel = 3.34 Å). (e) The X-Y slices (thickness = 1.7 nm) of the iso-surface rendered final 3D map at different Z heights. (f-j) The process of 3D reconstruction of the 6^{th} particle. The FSC curve shows the resolution of the final 3D map was 19 Å at the criteria of 0.143.

Figure S5. Cryo-ET 3D reconstruction of the 7^{th} and 8^{th} particle of MSNs by IPET: (a) The process of 3D reconstruction of the 7^{th} particle. Seven representative tilt images of the particle are gradually aligned via an iterative refinement. (b) Final 3D density map was colored by radius; the color bar indicates the distance from the geometry center of particle (unit: nm). (c) The FSC curve shows the resolution of the final 3D map was 20 Å at the criteria of 0.143. (d) The X-Y slices (thickness = 1.7 nm) of the spherical masked 3D map at different Z heights (Box size: X = Y = Z = 192 pixels; 1 pixel = 3.34 Å). (e) The X-Y slices (thickness = 1.7 nm) of the iso-surface rendered final 3D map at different Z heights. (f-j) The process of 3D reconstruction of the 8^{th} particle. The FSC curve shows the resolution of the final 3D map was 18 Å at the criteria of 0.143.

Figure S6. Cryo-ET 3D reconstruction of the 9th and 10th particle of MSNs by IPET: **(a)** The process of 3D reconstruction of the 9th particle. Seven representative tilt images of the particle are gradually aligned via an iterative refinement. **(b)** Final 3D density map was colored by radius; the color bar indicates the distance from the geometry center of particle (unit: nm). **(c)** The FSC curve shows the resolution of the final 3D map was 20 Å at the criteria of 0.143. **(d)** The X-Y slices (thickness = 1.7 nm) of the spherical masked 3D map at different Z heights (Box size: X = Y = Z = 192 pixels; 1 pixel = 3.34 Å). **(e)** The X-Y slices (thickness = 1.7 nm) of the iso-surface rendered final 3D map at different Z heights. **(f-j)** The process of 3D reconstruction of the 10th particle. The FSC curve shows the resolution of the final 3D map was 19 Å at the criteria of 0.143.