Supporting information

Facile transfer of surface plasmon electrons of Au-NPs to Zn₃V₂O₈ surfaces: A

case study of sun-light driven H₂ generation from water splitting[†]

Muhammad Jalil^a, Khezina Rafiq^a*, Muhammad Zeeshan Abid^a, Abdul Rauf^a, Shuxin Wang^b, Shahid Iqbal^c and Ejaz Hussain^a*

^aInstitute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur–63100, Pakistan

^bCollege of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao–266042, P.R. China

^cDepartment of Physics, Illinois Wesleyan University, IL-61702-2900, USA

Table S1: Crystallite size calculation by applying Scherer formula	
--	--

Catalyst	FWHM	2θ D (nm)		Eg (eV)
$Zn_3V_2O_8$	0.5848	36.5270	14.95	3.0
$Au@Zn_3V_2O_8$	0.4645	36.2070	18.80	2.9

Scherer Formula: To calculate the crystallite size of $Zn_3V_2O_8$ and $Au@Zn_3V_2O_8$ photocatalysts Scherer equation is used which is given below.

$$D = \frac{k\lambda}{\beta cos\theta}$$

Where D is crystallite size, k is Scherer constant which is equal to 0.9, λ is wavelength which is equal to the 0.15, β is full width at half maximum (FWHM) of peaks and θ is the angle of diffraction.

JCPDS # PDF 34-0378 Zn ₃ V ₂ O ₈ Orthorhombic						
Sr. No.	2-Theta	Theta	d(Å)	(h k l)		
1	15.365	7.682	5.7620	(020)		
2	18.741	9.370	4.7310	(120)		
3	26.450	13.225	3.3670	(220)		
4	27.080	13.540	3.2900	(211)		
5	29. 454	14.727	3.0300	(131)		
6	31.004	15.502	2.8820	(040)		
7	34.910	17.455	2.5680	(122)		
8	35. 980	17.990	2.4940	(320)		
9	36.464	18.232	2.4620	(311)		
10	43.114	21.557	2.0964	(042)		
11	43.301	21.650	2.0878	(151)		
12	48.606	24.303	1.8716	(160)		
13	57.703	28.851	1.5963	(162)		
14	58.440	29.220	1.5779	(360)		
15	60.562	30.281	1.5276	(004)		
16	62.973	31.486	1.4748	(442)		
17	64.606	32.303	1.4414	(080)		

Table S2: XRD parameters of Zn₃V₂O₈

Table S3: Comparison of metal	vanadates photocatalysts	for hydrogen	production reported
in literature.			

Catalyst	Light source	Catalyst amount	Sacrificial reagent	H ₂ production	Ref.
Au@Zn ₃ V ₂ O ₈	sunlight	5 mg	5 % Ethanol	7.50 mmolg ⁻¹ h ⁻¹	Present study
BiVO ₄ /Ti ₃ C ₂	=	=	-	0.15 mmolg ⁻¹ h ⁻¹	[1]
CeO ₂ /CeVO ₄ /V ₂ O ₅	*	=	-	0.18 mmolg ⁻¹ h ⁻¹	[2]
Cr:Cu ₃ V ₂ O ₈		=	5 % NaI	0.28 mmolg ⁻¹ h ⁻¹	[3]

Photocatalyst	Time (h)					H ₂ generation	
$(Au_{1.0}@Zn_{3}V_{2}O_{8})$	1	2	3	4	5	6	fill generation
1 st run	3.59	10.56	17.83	25.40	33.14	41.14	mmol g ⁻¹
2 nd run	3.58	10.30	17.50	24.80	32.30	40.20	=
3 rd run	3.41	10.16	17.34	24.07	31.64	39.14	=

Table S4: Recyclability test for most active photocatalysts ($Au_{1.0}@Zn_3V_2O_8$).

Figure S1: Visible light induced SPR effect of Au metal contents over $Zn_3V_2O_8$ for H_2 productions.

Figure S2: Recyclability test of Au@Zn₃V₂O₈ photocatalysts.

Reference:

- 1. Li, Y., et al., 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall Water splitting. Applied Catalysis B: Environmental, 2021. **285**: p. 119855.
- 2. Cui, X., et al., *Self-generating CeVO4 as conductive channel within CeO2/CeVO4/V2O5 to induce Z-scheme-charge-transfer driven photocatalytic degradation coupled with hydrogen production.* International Journal of Hydrogen Energy, 2019. **44**(43): p. 23921-23935.
- 3. Cárdenas Morcoso, D., *Chromium-doped copper vanadate films (Cr: Cu3V2O8) as photoanodes for water splitting.* 2017.