Electronic Supplementary Information

Supramolecular Pd@Methioine-EDTA-Chitosan nanocomposite: an effective and recyclable bio-based and eco-friendly catalyst for the green Heck crosscoupling reaction under mild conditions

Mohammad Dohendou, Mohammad G. Dekamin*and Danial Namaki

^aPharmaceutical and Heterocyclic Compounds Research Laboratory Department of Chemistry Iran University of Science and Technology. Email: mdekamin@iust.ac.ir

Contents	Page
Title page	SI-1
Table of Contents	SI-2
Graphical Abstract	SI-3
Fig. S1 Model reaction and Catalyst Preparation	SI-4
Scheme S1. Schematic representation for the preparation of Pd@MET-EDTA-CS nanocatalyst (1)	SI-5
Fig. S2 FTIR spectra of the Pd@MET-EDTA-CS catalyst (1) and its components.	SI-6
Fig. S3a EDS spectrum of the Pd@MET-EDTA-CS nanocatalyst (1).	SI-6
Fig. S3b The mapping images of Pd, C, N, O, Cl and S in the Pd@MET-EDTA-CS nanocatalyst (1).	SI-7
Fig. S4 FESEM images of the Pd@MET-EDTA-CS nanocatalyst (1).	SI-7,8
Fig. S5a DRS of the Pd@MET-EDTA-CS catalyst (1) and its components.	SI-8
Fig. S5b Intensified DRS of the Pd@MET-EDTA-CS catalyst (1).	SI-8
Fig. S6 XRD pattern of the Pd@MET-EDTA-CS catalyst (1).	SI-9
Fig. S7 (a) TGA, (b) diff. TGA and (c) diff. DTA Curves of the Pd@MET-EDTA-CS catalyst (1).	SI-10
Fig. S8 (a)The N2 adsorption–desorption isotherm of Pd@MET-EDTA-CS catalyst (1), and (b) its pore width.	SI-11
Fig. S9 Investigation of the optimized loading of the Pd@MET-EDTA-CS catalyst (1) in different solvents for HCR to afford 4b .	SI-11
Table S1. Optimization of the conditions for HCR in the model reaction of Iodobenzene (2a) andmethyl acrylate (3b) to afford methy cinnamate (4b) under different conditions in the presence ofPd@MET-EDTA-CS catalyst (1).	SI-12
Table S2 Synthesis of different derivatives of cinnamic acid (4a–l) through HCR catalyzed byPd@MET-EDTA-CS catalyst (1) under the optimized conditions.	SI-(13-15)
Table S3 The comparison of the obtained results for the HCR using catalyst 1 and other catalytic systems.	SI-15
Fig. S10 Reusability of the Pd@MET-EDTA-CS Catalyst (1) in the model reaction to afford methyl cinnamate (4b).	SI-16
Table S4. The result of AAS for the percentage of Pd species in catalyst 1.	SI-16
Scheme S2 The proposed mechanism for the synthesis cinnamic acid derivatives 4 using aryl halides and active alkenes in the presence of catalyst 1.	SI-17
Fig. S11 FTIR of Methyl Cinnamate.	SI-18
Fig. S12 ¹ H NMR of Methyl Cinnamate.	SI-18
Fig. S13 FTIR of cinnamic acid.	SI-19
Fig. S14 ¹ H NMR of cinnamic acid.	SI-19
Fig. S15 FTIR of Ethyl Cinnamate.	SI-20
Fig. S16 FTIR of EDTA Dianhydride.	SI-20
Fig. S17 FTIR of Chitosan.	SI-21
Fig. S18 The FTIR of fresh (blue) and recycled (orange) Pd@MET-EDTA-CS nanocatalyst (1)	SI-21
Fig. S19 The TEM images of Pd@MET-EDTA-CS nanocatalyst (1)	SI-22
Fig. S20 The FESEM images of the recycled nanocatalyst (1)	SI-23
Fig. S21 The XRD pattern of the recycled Pd@MET-EDTA-CS nanocatalyst (1)	SI-24

Graphical Abstract

Supramolecular Pd@Methioine-EDTA-Chitosan: An effective and recyclable bio-based and eco-friendly catalyst for the green Heck cross-coupling reaction under mild conditions

Mohammad Dohendou, Mohammad G. Dekamin*, Danial Namaki

A new supramolecular Pd(II) supported on the modified chitosan by DL-methionine using EDTA linker was prepared and characterized. The obtained low loaded Pd(II) catalyst effectively promotes the HCR in good to excellent yields and proper reusability.

Model Reaction:

Catalyst Preparation:

The graphical procedure for the synthesis of the catalyst is shown in Scheme S1.

Scheme S1. Schematic representation for the preparation of Pd@MET–EDTA–CS nanocatalyst (1).

FTIR Spectrums:

Pd@MET-EDTA-CS Catalyst (1) and its components

Fig. S2. FTIR spectra of the Pd@MET-EDTA-CS catalyst (1) and its components.

Fig. S4. FESEM images of the Pd@MET-EDTA-CS nanocatalyst (1).

Fig. 4a DRS of the Pd@MET-EDTA-CS catalyst (1) and its components.

Fig. 4b Intensified DRS of the Pd@MET-EDTA-CS catalyst (1).

Fig. S6. XRD pattern of the Pd@MET-EDTA-CS catalyst (1).

Fig. S8. (a)The N2 adsorption–desorption isotherm of Pd@MET-EDTA-CS catalyst (1), and (b) its pore width.

Fig. S9. Investigation of the optimized loading of the Pd@MET-EDTA-CS catalyst (1) in different solvents for the HCR to afford **5b**.

Table S1. Optimization of the conditions for the HCR in the model reaction of Iodobenzene (**3a**) and methyl acrylate (**4b**) to afford methy cinnamate (**5b**) under different conditions in the presence of Pd@MET-EDTA-CS catalyst (**1**) (0.0027 mol %).^a

X = I, Br, Cl R = COOH, COOMe, COOEt, COOBu

Entry	Catalyst	Base	Solvent	Temp. (°C)	Time (h)	Yield ^b (%)
1	-	K ₂ CO ₃	DMF	r.t	48	N.R
2	-	K ₂ CO ₃	DMF	Reflux	48	N.R
3	Pd@MET-ETDA-CS	-	DMF	Reflux	48	N.R
4	Pd@MET-ETDA-CS	-	ACN	Reflux	48	N.R
5	Pd@MET-ETDA-CS	-	Solvent-free	80	24	Trace
6	Pd@MET-ETDA-CS	K ₂ CO ₃	DMF	90	12-16	80-95
7	Pd@MET-ETDA-CS	K ₂ CO ₃	ACN	80	13-19	80-95
8	Pd@MET-ETDA-CS	K ₂ CO ₃	Toluene	105	36	Trace
9	Pd@MET-ETDA-CS	K ₂ CO ₃	H ₂ O	105	36	Trace
10	MET-ETDA	K ₂ CO ₃	DMF	130	36	N.R
11	MET-ETDA-CS	K ₂ CO ₃	DMF	130	36	N.R
12	MET-ETDA	K ₂ CO ₃	ACN	80	36	N.R
13	MET-ETDA-CS	K ₂ CO ₃	ACN	80	36	N.R
14	DL-methionine	K ₂ CO ₃	DMF	130	36	N.R
15	EDTA	K ₂ CO ₃	DMF	130	36	N.R

^aReaction conditions: aryl halide (**2a**, 2.0 mmol), alkene (**3b**, 3.0 mmol), K_2CO_3 (2.0 mmol), Pd@MET-EDTA-CS (**1**) (2.0 mg, 0.0027 mol %) and solvent (3.0 mL), under the Ar atmosphere. ^bIsolated yields.

Table S2 Synthesis of different derivatives of cinnamic acid (**4a–I**) through the HCR catalyzed by Pd@MET–EDTA–CS catalyst (**1**) under the optimized conditions.^a

Entry	Ar-X	Alkene	Product	Time (h)	Temp. (°C)	Yield ♭(%)	TON	TOF (h⁻¹)	m.p. (°C)	m.p. (°C) (Lit.)
1	2a	O OH 3a	ОН 4а	12	80	90	33330	2778	131-132	133 ¹³⁵
2	Br 2b	O OH 3a	OH 4a	14	80	80	29630	2116	131-132	133
3	CI 2c	O OH 3a	O OH 4a	40	80	20	7407	185	131-132	133
4	CI CI 2d	O OH 3a	CI O OH 4e	48	80	trace	NA	NA		212
5	Br O 2e	O OH 3a	OH 4f	48	80	trace	NA	NA		224- 226 ¹³⁶
6	2a	O OMe 3b	O OMe 4b	13	80	95	35185	2706	33-35	34-38 ¹³⁷
7	Br 2b	O OMe 3b	OMe 4b	15	80	85	31481	2099	33-35	34-38

SI-13

^a Reaction conditions: aryl halide (**2a-e**, 2.0 mmol), alkene (**3a-d**, 3.0 mmol), K_2CO_3 (2.0 mmol), Pd@MET-EDTA-CS (**1**, 2.0 mg, 0.0027 mol %) and solvent (3.0 mL), under the Ar. ^b Isolated yields.

Table S3. The comparison of the obtained results for the	HCR using catalyst 1 and other	catalytic systems
--	--------------------------------	-------------------

Entry	Catalyst	Reaction Conditions	Catalyst	Time (h)	Yield (%)	Reference
			Amount			
1	Trifunctional N,N,O-terdentate amido/pyridyl carboxylate Pd(II) complexes	DMF / 145 °C / Na ₂ CO ₃	0.01 mol %	20	92	131
2	Pd(OAc) ₂	NMP / 135 °C / NaOAc / UV – VIS	0.05 mol %	44	80	132
3	CMH-Pd (0)	DMF / 120 °C / Et ₃ N	50 mg	6	90	133
4	NHC-Pd/IL@SiO ₂	NMP / 140 °C / NaOAc	0.01 mol %	24	94	134
5	Pd(quinoline-8-carboxylate) ₂	DMF / 130 °C / K ₂ CO ₃	0.01 mol %	30	39-94	135
6	OCMCS-Pd	DMF / 140 °C / Et ₃ N	0.02 mmol	12	89-98	136
7	Pd@MET-EDTA-CS	DMF / 90 °C / K ₂ CO ₃	0.0027 mol %	16	95	This work
8	Pd@MET-EDTA-CS	CH ₃ CN / 80 °C / K ₂ CO ₃	0.0027 mol %	18	95	This work

SI-14

Fig. S10. Reusability of the Pd@MET-EDTA-CS Catalyst (1) in the model reaction to afford methyl cinnamate (4b).

Table S4. The result of AAS for the percentage of Pd species in catalyst 1.

Supplier	Matariala and Engage
	Materials and Energy
	Research Center
	(MEPC)
	(MERC)
Device Model	GBC 932 plus (Atomic Absorption Spectrometer) Made by GBC Co., Australia
Pd Content (wt %)	0.286
Sample Code	02022000301AAA1
Date of Analysis	May 10, 2023
	L _n ed ⁱⁱ
	Catalyst 1
	DMF
	or CH ₃ CN
	×>
	Base:HX L _n Pd ⁰ (2a-e)
	e Elimit
	78 ^{ductive}
Base:	
	CI-N X
(VI)	
↑	
	• = Pd
R	
(4a-I)	Syn-&Hydride HO N H H2N CO H N H O OH (3a-d)
	S S
	Pd@MET-EDTA-CS
	H Migratory Insertion

Scheme S2. The proposed mechanism for the synthesis cinnamic acid derivatives **4** using aryl halides and active alkenes in the presence of catalyst **1**.

Spectral data of the selected products

Methyl Cinnamate (4b): White crystals, M.P. = 34 - 38 °C; FT-IR (KBr, cm⁻¹) v = 3324, 3087, 2955, 1689, 1622, 1567,1453, 1218, 1082; ¹H NMR (500 MHz, DMSO– d_6) δ (ppm) = 3.7 (s, 3H, OCH₃), 6.6 (1H, d, J = 16.0 Hz, MeOCCH=), 7.4 (3H, m, Ar-H), 7.7 (2H, m, Ar-H), 7.64 (1H, d, J = 16.0 Hz, ArCH=) (**Fig. S11-12**).

Fig. S12 ¹H NMR of methyl cinnamate.

Fig. S15. FTIR of Ethyl Cinnamate.

Fig. S16. FTIR of EDTA Dianhydride.

Fig. S17. FTIR of Chitosan.

Fig. S18. The FTIR of fresh (blue) and recycled (orange) Pd@MET-EDTA-CS nanocatalyst (1)

Fig. S19. The TEM images of Pd@MET-EDTA-CS nanocatalyst (1)

Fig. S20. The FESEM images of the recycled nanocatalyst (1)

Fig. S21. The XRD pattern of the fresh (orange) and recycled (blue) Pd@MET-EDTA-CS nanocatalyst (1)