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1 Details Spatial Statistics

1.1 Spatial statistics summary functions
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Figure 1: Univariate summary functions of a manually generated clustered (left) and a spaced (right) point pattern to illustrate the respective
behaviour in these cases.
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1.2 Monte Carlo Simulations

1.2.1 Complete Spatial Randomization of a single channel

To generate point patterns that display complete spatial randomness in one of the color channels the points in color channel 2 are sampled from a
continuous uniform distribution inside the region of interest (ROI), while the positions of the points in channel 1 in the generated pattern match the
positions in the measured data. The number of generated random points was chosen to match the number of points from the measurement.

1.2.2 Transport Simulation

First a lognormal distribution

lnormµ,σ (x) =
1√

2πσx
exp

[
(log(x)−µ)2

2σ2

]
is fitted to the histogram of nearest neighbour distances between the first and second color channel points in the point pattern, to estimate reasonable
parameters for the mean µ and standard deviation σ on the logarithmic scale. The positions of the channel 1 points in the simulation are unaltered
compared to the measurement~r′1,i =~r1,i. The positions of the channel 2 points in the simulation~r′2,i are calculated by shifting the positions of the
channel 1 points~r1,i by ∆~rµ,σ ,i.

~r′2,i = ∆~rµ,σ ,i +~r1,i

The shift vector ∆~rµ,σ ,i is randomly sampled

∆~rµ,σ ,i = ρµ,σ

(
cos(θ)
sin(θ)

)
, where ρµ,σ is sampled from lnormµ,σ (x) and θ ∈ [0,2π] is sampled from a continuous uniform distribution. If the resulting~r′2,i lies outside of the
defined ROI a new shift vector ∆~rµ,σ ,i is sampled until the resulting~r′2,i lies inside of the ROI. This process is repeated for every channel 1 point
~r1,i.
The number of generated points is subsequently altered to ensure that the number of generated points in channel 2 is equal to the number of measured
points in channel 2. If the number of points in channel 2 in the measurement nm is greater than the number points in channel 2 in the simulation ns
(nm > ns), a total of nm−ns channel 2 points sampled from a continuous uniform distribution in the ROI are added to the simulated point pattern in
channel 2. If on the other hand nm < ns, a total of ns−nm randomly selected channel 2 points are removed from the simulated point pattern.
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Figure 2: Construction of the shift vector ∆r from the randomly sampled variables ρ and θ
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2 Colocalisation: Supporting Data
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Figure 3: Complementary summary functions to the panel in the main article. Here the color channels 1 and 2 have been exchanged in the
calculation of the bivariate summary functions (e.g. g21(r) is shown instead of g12(r)). It becomes apparent, that the character of the summary
functions persists. Furthermore, the L-Function is shown in this panel, which is in large parts redundant to the pair correlation function and is thus
not dicussed in the main article.
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Figure 4: Point pattern with ROI for Lysosomes-GFP/Lysosomes-RFP for the case discussed in the main article.

Figure 5: Point pattern with ROI for Golgi-GFP/Lysosomes-RFP for the case discussed in the main article.
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Figure 6: Point pattern with ROI for CND/Lysosomes-RFP for the case discussed in the main article.
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Figure 7: Further microscopy images for Lysosomes-GFP/Lysosomes-RFP. The size of the shown scale bars amounts to 5 µm.
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Figure 8: Further microscopy images for Golgi-GFP/Lysosomes-RFP. The size of the shown scale bars amounts to 5 µm.
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Figure 9: Further microscopy images for CND/Lysosomes-RFPThe size of the shown scale bars amounts to 5 µm.
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3 Single Particle Tracking
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Figure 10: Ensemble averaged mean square displacement plotted against time for all 100 time points.
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3.1 Identification of movement patterns via cluster analysis on particle tracking data

3.1.1 Cluster Analysis via tSNE and DBSCAN

To distinguish between different types of motion in the single particle tracking data eight different metrics were calculated. The first four are
moments of the distribution of jump distances, namely the mean, the standard deviation, the skewness and the kurtosis of the jump distances in a
single track. The four other metrics are global characteristics of the tracks namely the mean squared displacement msd 1, the turn angle correlation
tac2, the straightness1 and the sinuosity 3 that were calculated with the movement metrics() function from the amt-package1. The metrics are given
by:

msd =
1
N

N

∑
i=1

[(xi− x)2 +(yi− y)2] (1)

tac =
1
N

N−1

∑
i=1

[(cos(αi+1)− cos(αi))
2 +(sin(αi+1)− sin(αi))

2] (2)

straightness =
total distance

cumulative distance
(3)

sinuosity = 2
[

p
(

1− c2− s2

(1− c)2 + s2 +b2
)]−0.5

(4)

With the number of points in a track N, the i-th x- (y-)Koordinate xi (yi), the i-th turn angle αi, the mean step length p, the mean cosine (sine) of α

c (s) and the coefficient of variation of step length b. A point in the eight-dimensional space spanned by these metrics is calculated for each track.
Prior to the cluster analysis the dimensionality reduction algorithm tSNE 4 is applied mapping the data to two coordinates while preserving the
local properties of the eight-dimensional dataset. Clusters are analysed with DBSCAN5. For tSNE a perplexity of perp = 30 was chosen and for
DBSCAN the hyperparameters ε = 1.9 and minPts = 5 were chosen. The resulting clusters are displayed in Figure 11. The ensemble averaged
mean squared displacement at time t was calculated for each individual cluster (Figure 10).
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Figure 11: Plot of the DBSCAN clustering on the tSNE-transformed movement metrics for the particle trajectories.
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Figure 12: Single particle tracking time series data. The index of the image indicating the position in the time series is displayed in the lower right
corner.
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Figure 13: Synthetic data of a diffusion process with a diffusion constant of D = 1×10−13 m2

s (left column) and D = 2×10−14 m2

s (right column)
on a 10 µm× 10 µm region of interest. The positions of the particles were initialized with a Poission point process. The number of particles, and
therefore the degree of crowding, here increase from top to bottom.
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D = 1×10-13 m2/s 
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Figure 14: Bivariate pair correlation functions g12(r) and nearest neighbor functions G12(r) (shown as solid black line) calculated from the synthetic
data displaying diffusion shown in the left column (D = 110−13 m2

s ) of figure 13 after 1s and 2s correlated with the starting distribution, respectively.
The envelope of CSR is displayed in blue, while the envelope of a Monte Carlo simulation of diffusive transport via a 2D Gaussian function is drawn
in orange. The number of particles increases from top to bottom illustrating the effect of crowding on the spatial statistics analysis.
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D = 2×10-14 m2/s 
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Figure 15: Bivariate pair correlation functions g12(r) and nearest neighbor functions G12(r) (shown as solid black line) calculated from the synthetic
data displaying diffusion shown in the right column (D = 2× 10−14 m2

s ) of figure 13 after 1s and 2s correlated with the starting distribution,
respectively. The envelope of CSR is displayed in blue, while the envelope of a Monte Carlo simulation of diffusive transport via a 2D Gaussian
function is drawn in orange. The number of particles increases from top to bottom illustrating the effect of crowding on the spatial statistics analysis.
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Figure 16: Synthetic bivariate point pattern gernerated by radial drift as an example of a purely directed motion. The point pattern at t = 0 is sampled
from a random uniform distribution on a 10 µm×10 µm region of interest. The patterns at t = 1s and t = 2s are generated by shifting the points in
radial direction with a velocity of 2×10−9 m

s .
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Figure 17: Bivariate pair correlation functions g12(r) and nearest neighbor functions G12(r) (shown as solid black line) calculated from the synthetic
data of the point pattern from figure 16, which is subject to a radial drift of a constant velocity of 2×10−9 m

s . The summary functions G12(r) and
g12(r) were calculated between the starting distribution and the distributions after t = 1s and t = 2s, respectively. The envelope of CSR in channel
2 is shown in blue. The number of particles increases from top to bottom illustrating the effect of crowding on the spatial statistics analysis. Note
that G12(r) becomes indistinguishable from CSR with increasing particle density.
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