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Table S1. Comparisons of OER performance over Fe/Ni-based catalysts in alkaline 
medium.

Catalyst WEa) Electrolyte [M 
KOH]

Jb) ηc) TSd) Ref.

N-MCF/N-MGF(Fe3O4) GC 0.1 10 324 67 [1]
MnFe2O4/Ni Foam GC 1 10 310 65 [2]
Fe3O4@Co9S8/rGO-2 GC 1 10 320 54.5 [3]
g-C3N4/CeO2/Fe3O4 GC 1 10 310 51 [4]
Fe3O4/Ni-BDC GC 1 10 295 47.8 [5]
Fe3O4-CoPx/TiN GC 1 10 331 122 [6]
Ni2P GC 1 10 320 105 [7]
Ni3Fe@Fe3O4/NC10% GC 1 10 350 56 [8]
Co3O4 nanosheet GC 1 10 384 52 [9]
SrCo0.8Fe0.5-xO3-δ/FexOy GC 1 10 350 79 [10]
Fe3O4@NiSx/rGO GC 1 10 330 35.5 [11]
Co3O4/Fe3O4 GC 0.1 10 410 62 [12]
H-Co9S8/ Fe3O4@SNC GC 0.1 10 280 87 [13]
Ni3B GC 1 10 302 52 [14]
Pt/NiO GC 1 10 358 33 [15]
Ni2-xFexO GC 0.5 10 325 53 [16]
NiOx/P-CNTs GC 0.1 10 350 40 [17]
Ni-O-Ni GC 1 10 300 74 [18]
Ni3Se2 GC 1 10 310 97.1 [19]
N-NiO GC 0.1 10 400 56 [20]
NiO-NPs GC 1 10 481 238 [21]
Ni3FeN/r-GO GC 1 10 270 94 [22]
NiO/Ni-Fe LDH GC 1 10 270 30 [23]
NiCo2Px/CNTS GC 1 10 284 50.3 [24]
NiO/MnO2 GC 0.1 10 345 42 [25]
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Ni3N GC 1 10 290 45 [26]
Co2.25Fe0.75O4 GC 1 10 350 50 [27]
Ni-MOF GC 1 10 280 64 [28]
R-Fe3O4 GC 1 10 320 61.47 [29]
Ni/Fe3O4@ONC GC 1 10 296 61 [30]
Fe3O4@SiO2@NiO/Grap
hene/C3N4

GC 1 10 288 40.46 This 
work

a) WE are the working electrode (GC, Glass carbon); b) J is current density (mA cm-2); c) 
η is overpotential (mV); d) TS is Tafel slope (mV dec-1).

Fig. S1. (a)-(i) SEM images of graphene.



Fig. S2. (a)-(f) TEM image of Fe3O4@SiO2@NiO/Graphene/C3N4.

Fig. S3. (a)-(f) TEM image of Fe3O4@SiO2@NiO.



Fig. S4. The Ni 2p (a), Fe 2p (b), and O 1s (c) XPS spectra results of 
Fe3O4@SiO2@NiO/Graphene/C3N4 before and after OER.

Fig. S5. SEM images of Fe3O4@SiO2@NiO/Graphene/C3N4 catalyst before (a) and 
after (b-e) stability test.



Fig. S6. HRTEM images of Fe3O4@SiO2@NiO/Graphene/C3N4 catalyst before (a, b) 
and after OER (c, d).

Section1. Discussion of Mechanism of OER 
OER kinetics are a multi-electron charge transfer process in alkaline medium and 

we consider a four-electron reaction mechanism for OER. Under alkaline conditions, 
the water oxidation reaction is given by (equation (1)):

 \* MERGEFORMAT (1)2 24 ( ) 2 4OH O g H O e   

The OER reaction also includes the adsorption of reactive species on the 
electrode surface, the transfer of electrons, and the desorption process of reactive 
species. In general, this reaction is usually assumed to proceed in the following four 
elementary steps [31-33] and the OER mechanism in an alkaline electrolyte is depicted 
as follows (equations (2)-(5)):

  \* MERGEFORMAT (2)* *OH OH e   



 \* MERGEFORMAT (3)2* *OH OH O H O e    

 \* MERGEFORMAT (4)* *O OH OOH e   

 \* MERGEFORMAT (5)2 2* *OOH OH O H O e     

where the * denotes the active site on the catalyst surface. The Tafel plots 
describe the kinetics and mechanism of OER. Based on the above mechanism, the free 
energy of three intermediate states, *OH, *O, and *OOH, are important to identify a 
given material’s OER activity.

In general, the electrochemical reactions at the cathode and anode parts for the 
water-splitting reaction are different under alkaline conditions (equations (6) and (7)). 
The OER reaction involves four electron transfers, and the kinetics of the M-O bond 
fracture process is very slow. It has a high overpotential and consumes a high amount 
of energy in the anodic reaction of electrolytic water. 

Alkaline conditions:
Cathode reaction:

  \* MERGEFORMAT 2 24 4 2 4H O e H OH    0
c 0.83E V 

(6)
Anode reaction:

  \* MERGEFORMAT 2 24 2 2 4OH H H O e    0
a 0.40E V 

(7)
Possible OER mechanisms in an alkaline medium have been proposed, as 

demonstrated in equations (8)-(12). It is worth noting that the diagram in Fig. S7 
displays two different approaches to form O2 from a produced MO intermediate in 
different electrolytes, where “M” also denotes the active site. As illustrated in the 
green route in Fig. S7, the first type is the direct combination of two M-O 
intermediates to produce O2 (equation (10)). The other method is for M-O to first form 
a peroxide (M–OOH) intermediate (equations (11)) and subsequently decompose to 
O2 (blue route in Fig. S7; equations (12)). Most of the proposed mechanisms involve 
MOH and MO intermediates [34-36]. During the heterogeneous OER process, all M–O 
bonding interactions within the intermediates (MOH, MO, and MOOH) are crucial to 
determining the overall electrocatalytic activity. Further, Fig. S8 displays a Schematic 
diagram of the three-electrode system and OER process in our experiments.

The proposed mechanism under alkaline conditions:

 \* MERGEFORMAT (8)M OH MOH e   

 \* MERGEFORMAT (9)2MOH OH MO H O e    

 \* MERGEFORMAT (10)22 2MO M O 

 \* MERGEFORMAT (11)MO OH MOOH e   



 \* MERGEFORMAT 2 2MOOH OH M O H O e     

(12)

Fig. S7. The oxygen evolution reaction (OER) mechanism in acid (pink line) and 
alkaline (green line) medium. Two reaction routes of oxygen evolution take place: 
(1) the blue line indicates that the oxygen evolution involves the formation of a 
peroxide (M–OOH) intermediate (blue line); (2) while another route for the direct 
reaction of two adjacent oxos (M–O) intermediates (aqua green line) to produce 
molecular oxygen.

Fig. S8. Schematic diagram of the three-electrode system and OER.

Section2. Discussion of the structure-activity relationship between the catalyst and 
OER performance 

As illustrated in Figs. S9 (a-f), the decoration of graphene can effectively improve 
the OER activity of the catalyst, and with the continuous addition of C3N4, the catalytic 
performance of Fe3O4@SiO2@NiO/Gr/C3N4 will continues to enhance, ultimately 



presenting the best catalytic performance. In sum, Fe3O4@SiO2@NiO/Gr/C3N4 exhibits 
superior OER performance and long-term durability compared to other catalysts. The 
OER electrocatalytic performance increased with the addition of different 
components, and the details are explained as follows:

Firstly, the Fe3O4@SiO2@NiO magnetic nanoparticles generated by the 
solvothermal method possess strong binding and low interfacial resistance between 
the two-dimensional structure of electrically conducting graphene and the 
Fe3O4@SiO2@NiO magnetic nanoparticles are uniformly distributed on the surface of 
the graphene and its good contact with the graphene nanosheets also reduces the 
external transport resistance in electrocatalysis. 

Secondly, the two-dimensional structure and large specific surface area (900 
m2/g) of graphene ensure more exposed active sites and more activated reactive 
molecules involved in catalytic reactions while accelerating mutual electron transport, 
and the carbon framework architecture also improves electron mobility and electrical 
conductivity, all of which improve our catalytic efficiency. The high specific surface 
area of C3N4 also increases the contact area, and the electron transfer rate is 
improved. The significantly improved electrocatalytic performance results from their 
large surface area, excellent internal diffusion property, and superior intrinsic 
conductivity.

Thirdly, one-dimensional rod-shaped C3N4 possesses a large specific surface area 
due to its outstanding aspect ratio, which accelerates the electron transfer rate faster 
and can exhibit more excellent electrocatalytic performance. The addition of C3N4 with 
a high specific surface area, on the one hand, increases the contact area, and the 
increase of active site in the electrocatalytic reaction reduces the OER reaction barrier 
[37]. On the other hand, it also improves conductivity and electron diffusion rate, 
increasing electron transfer rate and excellent OER electrocatalytic performance. The 
introduction of the N element greatly contributed to the performance of the oxygen 
evolution reaction of the catalyst [38-42]. The presence of repeating s-triazine units in 
the C3N4 structure can make it easier to coordinate with nanoparticles to form 
composites, and this strong coordination interaction helps electron transport. 
Moreover, C3N4 has good chemical stability and high pyridine nitrogen content, which 
helps to enhance the electrocatalytic performance, e.g.: ACS Appl Mater Interfaces 
2018, 10 (45), 39161-39167; ChemCatChem 2018, 10 (24), 5587-5592; The Journal of 
Physical Chemistry C 2017, 121 (36), 19548-19558; J Am Chem Soc 2017, 139 (9), 3336-
3339 [43-52].

Furthermore, the synergistic effect between different components in the 
composite ultimately improves the electrocatalytic efficiency of the obtained 
Fe3O4@SiO2@NiO/Graphene/C3N4 catalyst. The addition of C3N4 and graphene with a 
high specific surface area can increase the contact area between the different 
materials, and significantly improve the conductivity of the overall system, thereby 
increasing the electron diffusion rate between the different materials. Besides, 
different components are connected through close contact to achieve 
interconnectivity and conductivity. The different components are in close contact with 
each other and build bridges to form the structure, resulting in increased interaction 



between them. Benefiting from the synergistic effect between different components 
of the catalyst, the Fe3O4@SiO2@NiO/Graphene/C3N4 catalyst exhibits highly active 
electrochemical OER in alkaline electrolytes. In conclusion, such a high catalytic 
reactivity is attributed to the synergic effect of multiple elements. 

Therefore, the synergistic effect between different components finally 
effectively improves the catalyst’s electrocatalytic efficiency [41-46]. This work 
provides a feasible approach to achieve the strong combination of carbon materials 
and metal oxides for excellent OER performance.

Fig. S9. TEM images of (a) Fe3O4, (b) Fe3O4@NiO, (c) Fe3O4@SiO2@NiO, (d) 
Fe3O4@SiO2@NiO/Graphene and (e) Fe3O4@SiO2@NiO/Graphene/C3N4. (f) 
Corresponding LSV curves with different components.
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