A hybrid polymer protective layer with uniform Li⁺ flux and self-adaption enabling dendrite-free Li metal anode

Chaohui Wei^a, Jinxiang Deng^b, Jianxiong Xing^{ab}, Zihao Wang^{ab}, Zhicui Song^{ab}, Donghuan Wang^a Jicheng Jiang^a, Xin Wang^a, Aijun Zhou^{ab}, Wei Zou^c, and Jingze Li^{*ab}

^a Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China

^b School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China. E-mail: lijingze@uestc.edu.cn

^c Lithium Resources and Lithium Materials Key Laboratory of Sichuan Province, Tianqi Lithium Co., Ltd., Chengdu 610093, China

*Corresponding author. E-mail address: lijingze@uestc.edu.cn (J. Li).

Fig. S1. CE test of Cu foil coated with PVA-PAA film of different weight proportion in (a) 1 mA cm⁻² and 1 mAh cm⁻²; (b) 3 mA cm⁻² and 1 mAh cm⁻².

Fig. S2. CE test of Cu foil coated with PVA-PAA film of difference thickness under 1 mA $\rm cm^{-2}$ and 1 mAh $\rm cm^{-2}.$

z' (ohm cm²) Fig. S3. Impedance spectra and Ionic conductivities of (a) the liquid electrolyte, (b) PVA, (c) PVA-PAA, and (d) PAA film.

Fig. S4. Enlarge impedance spectra and Ionic conductivities of (a) the liquid electrolyte, (b) PVA, (c) PVA-PAA, and (d) PAA film.

Fig. S5. Stress-strain profile of the PVA-PAA composite and PAA film.

Fig. S6. CE test of Cu foil coated with PVA-PAA film and bare Cu foil under 1 mA cm⁻² and 1 mAh cm⁻².

Fig. S7. Cross-sectional morphology of Li deposited on Cu foil, after depositing 5 mAh cm⁻² of Li with a current density of 0.5 mAcm⁻².

Fig. S8. (a-b) Surface and (c) cross-sectional SEM images of Li dissolution on Cu foil.

Fig. S9. Cycling performances of symmetric cells of Li foil coated with PVA-PAA layer of different thickness at 3 mA cm⁻² and 1 mAh cm⁻².

Fig. S10. Nyquist plots of symmetric cell of Li foil with and without coating at (a) 0th, (b) 50th, (c) 100th and (d) 200th cycles at 1 mA cm⁻² and 1 mAh cm⁻². The inset is the equivalent circuit.

Fig. S11. Cycling performances of four symmetric cells at the selected period at (a) 1 mA cm⁻²/1 mAh cm⁻², and (b) 3 mA cm⁻²/1 mAh cm⁻².

Fig. S12. Galvano-charge/discharge curves of PVA-PAA coated Li|LFP and Li|LFP cell.

Table S1. Impedances from Nyquist plots of symmetric cell of Li foil with and without coating at 0th, 50th, 100th and 200th cycles 1 mA cm⁻² and 1 mAh cm⁻².

	Cycle Number	0	50 th	100 th	200 th
R _{overall} (Ω)	Li	415.2	175.1	190.0	253.7
	PVA-PAA	762.4	95.1	88.1	93.2