Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2023

> Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Wei Zhang^a, Sagar Shrestha^b, Sajjan Parajuli^a, Bijendra Bishow Maskey^a, Jinhwa Park^a, Hao Yang^a, Younsu Jung^{*a}, and Gyoujin Cho^{*a,b}

a. Department of Biophysics, Research Engineering Center for R2R-Printed Flexible Computer, Sungkyunkwan

University, Suwon-si, 16419, Republic of Korea.

b. Department of Intelligent Healthcare Convergence, Sungkyunkwan University, Suwon-si, 16419, Republic of Korea.

Email: isinu7@skku.edu, gcho1004@skku.edu

Figure S1: (a) All the transfer curves used in Figure 2, (b) Statistical distribution histograms of mobilities, (c) transconductance (g_m) of devices in (a).

Figure S2: All the transfer characteristics after 50 nm Al_2O_3 deposition mentioned in Figure 1 at coating temperatures of (a) 100 °C, (b) 130 °C, (c) 140 °C, and (d) 150 °C, respectively.

Figure S3: The curing temperature effect to the device performance in ALD chamber.

DEVICE TYPE	ALD DEPOSITION CONDITION	MOBILITY (CM²/VS)	I _{on} /I _{off}	V _{TH} (V)	TRANSCONDUCTANCE (S)
P-type	100 °C, 50 nm	9.75*10 ⁻⁵ -1.97*10 ⁻⁴	6.41*10 ² - 1.78*10 ³	14.4 ± 1.5	-3.43 ± 0.87*10 ⁻⁵
P-type	130 °C, 50 nm	1.12*10 ⁻⁴ -1.54*10 ⁻⁴	1.65*10 ³ - 7.67*10 ³	15.4 ± 5	-3.31 ± 0.26*10 ⁻⁵
N-type	150 °C, 50 nm	2.47*10 ⁻⁶ -9.45*10 ⁻⁶	7.02*10 ² - 3.79*10 ³	-17.2 ± 1.2	-6.67 ± 2.15*10 ⁻⁶
N-type	140 °C, 200 nm	1.13*10 ⁻⁶ -3.35*10 ⁻⁶	3.19*10 ³ - 5.26*10 ³	-21 ± 6	-4.1 ± 1.1*10 ⁻⁵

Table S1. Electrical parameters of the p-type and n-type TFTs fabricated under different ALD conditions.

Figure S4: All the transfer characteristics after $140 \text{ }^{\circ}\text{C} \text{ Al}_2\text{O}_3$ deposition mentioned in Figure 1 at a coating thickness of (a) 50 nm, (b) 100 nm, (c) 150 nm, and (d) 200 nm, respectively.

Figure S5: The curing time effect to the device performance in ALD chamber.

Figure S6. The stability test of (a) p-type, (b) ambipolar type, (c) n-type device under biasing voltage (Vgs=20 V).

Figure S7: (a) Transfer curve (left) and output curve (middle: p-type, right: n-type) of (a) M1 and M2 in Figure 4 (d). (c) Transfer curve (left) (middle: p-type, right: n-type) in Figure 4 (g).