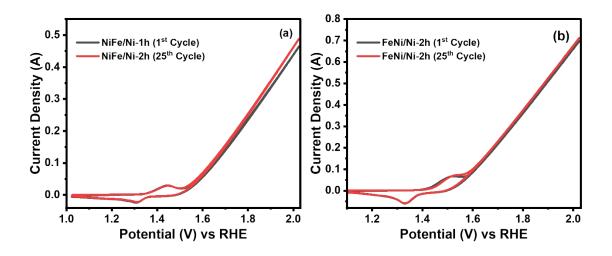

Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2023


Electronic Supplementary Information

Facile deposition of FeNi/Ni hybrid nanoflower electrocatalyst for effective and sustained water oxidation

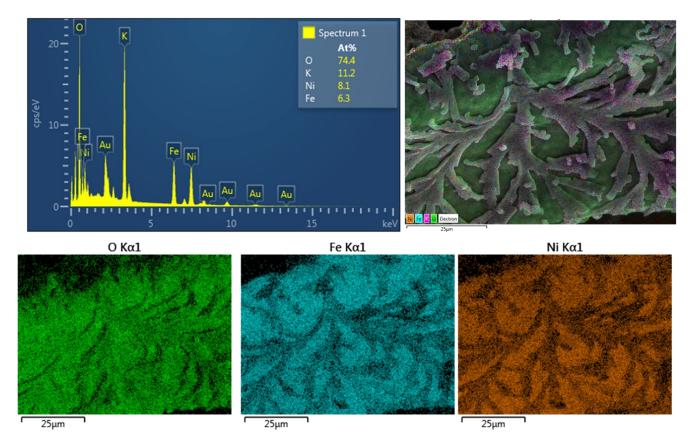

Muhammad Ali Ehsan¹, Abuzar Khan^{1*}, Munzir H. Suliman¹, Mohamed Javid² ¹Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), ²Core Research Facilities, King Fahd University of Petroleum & Minerals, Box 5040, Dhahran 31261, Saudi Arabia Corresponding author E-mail: abuzar@kfupm.edu.sa

Figure S1: EDX spectra and corresponding elemental maps of Fe and Ni elements of the developed FeNi/Ni-1h and FeNi/Ni-2h electrocatalysts by AACVD.

Figure S2: Electrocatalytic investigations; concurrent 1st and 25th cyclic voltammetry curves for (a) FeNi/Ni-1h; (b) FeNi/Ni-2h; recorded at a scan rate of 50 mV sec ⁻¹ in 1.0 M KOH electrolyte solution.

Figure S3: EDX analysis of FeNi/Ni-2h catalysts with corresponding elemental ratio after 100 h of chronopotentiometric (OER stability) testing. EDX map indicating the homogenous distribution of Fe, Ni and O atoms on the surface of catalyst after chronopotentiometric testing.