Cellulose Nanofibers (CNFs) in the Recycling of Nickel and Cadmium Battery Metals using Electrodeposition

B. W. Hoogendoorn^a, O. Karlsson^a, X. Xiao^a, A. Pandey^a, S. E. Mattsson^b, V. Ström^c, R. A. Andersson^a, Y. Li^a and R. T. Olsson^a

^{e.} Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. E-mail: <u>rols@kth.se</u>;

^b SAFT AB, Jungnergatan 25, 572 32 Oskarshamn, Sweden.

^c Department of Material Science and Engineering, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Brinellvägen 23, SE-100 24. Stockholm, Sweden.

Sample**	Electrolyte types	C(Ni ²⁺) [M]	C(Cd ²⁺ [M]	C(a-CNF) [g/L]	C(q-CNF) [g/L]
1	Ni-deposition single-metal reference	0.44	0	0	0
2	Ni-deposition single-metal a-CNF	0.44	0	0.5	0
3	Ni-deposition single-metal q-CNF	0.44	0	0	0.5
4	Cd-deposition single-metal reference	0	0.44	0	0
5	Cd-deposition single-metal a-CNF	0	0.44	0.5	0
6	Cd-deposition single-metal q-CNF	0	0.44	0	0.5
7	Ni/Cd-deposition mixed-metal reference	0.22	0.22	0	0
8	Ni/Cd-deposition mixed-metal reference	0.40	0.04	0	0
9	Ni/Cd-deposition mixed-metal reference	0.33	0.11	0	0
10	Ni/Cd-deposition mixed-metal reference	0.11	0.33	0	0
11	Ni/Cd-deposition mixed-metal reference	004	0.40	0	0
12	Ni/Cd-deposition mixed-metal a-CNF	0.22	0.22	0.5	0
13	Ni/Cd-deposition mixed-metal a-CNF	0.40	0.04	0.5	0
14	Ni/Cd-deposition mixed-metal a-CNF	0.33	0.11	0.5	0
15	Ni/Cd-deposition mixed-metal a-CNF	0.11	0.33	0.5	0
16	Ni/Cd-deposition mixed-metal a-CNF	004	0.40	0.5	0
17	Ni/Cd-deposition mixed-metal q-CNF	0.22	0.22	0	0.5

Table S1: Composition of the electrolytes used during the electrodeposition of nickel and/or cadmium*

*All reactions were performed at potentiostatic conditions at 3.5 V, 40 $^\circ\text{C}$, and for 10 min.

** The electrolyte volume and electrolyte concentration for Na₂SO₄, and H₃BO₃ were identical in all electrolytes (0.5 L, 12 g/L and 40 g/L, respectively).

Table 32. Crystallite size of the mickel and caufilium deposits as determined from the three peaks with the ingrest intensity.

Sample	Electrolyte types	Peak 1	Peak 2	average
1	Ni-deposition reference	21	15	18±4
2	Cd-deposition reference	65	56	60±6

*For Ni-deposition, the peak 1 and 2 are the ones corresponding to the (111)-, and the (200)-planes, and for the Cd-deposits, these corresponds to the (002)-, and the (101)-planes.

Fig S1. X-ray diffractogram of the untreated bacterial cellulose and the deconvoluted peaks corresponding to the crystalline peaks corresponding to the (101)- (violet), (10¹)- (red), (021) (purple), and (002)- (green) and (040)-plane (dark blue). The blue curve at *ca.* 21° corresponds to the amorphous contribution obtained through gaussian curve fitting.

Fig S2. SEM-micrographs of cadmium deposits one day after electrodeposition (a and b) and 30 days months after electrodeposition (c and d).

Fig. S3. Molecular structure of the repeating unit of cellulose after acid hydrolysis (a) and quaternization (b).

Fig. S4. Reaction mechanisms for the reactions previously suggested to occur in an aqueous, alkaline medium, including the direct quaternization of cellulose on the hydroxyl group attached to the C_6 -atom (a), the degradation of the quaternized cellulose (b), the hydrolysis of the GTMAC-precursor (c), and the repeated substitution occurring on an already quaternized C_6 -hydroxyl group. the presence of sulfate half esters has not been taken into account in this schematic.

Fig. S5. Photographs of the active area of electrodes that had been deposited with nickel without the presence of CNF (a) and in the presence of 0.5 g/L of a-CNF (b).

Fig. S6. X-ray diffractogram of Ti-electrodes after 10 min of electrodeposition in electrolytes containing 0.5 g/L of a-CNF (a-c) or q-CNF (d-f). The electrodeposition protocols were performed in electrolytes containing 0.44 moles/L of NI-ions (a and f), Cd-ions (b and e) or 0.22 moles/L of Ni- and Cd-ions (c and f). The red dots mark the peaks originating from the Ti-electrode.