Electronic Supporting Information

Observation of Magnetic Vortex Configuration in Non-stoichiometric $\mathrm{Fe}_{3} \mathrm{O}_{4}$ Nanospheres

Gopal Niraulaa, ${ }^{\text {a }}$, Denilson Toneto ${ }^{\text {c }}$, Gerardo F. Goya ${ }^{\text {d }}$, Giorgio Zoppellaroe ${ }^{\text {e }}$, Jose A. H. Coaquira ${ }^{\text {b }}$, Diego Muraca, Juliano C. Denardin*, Trevor P. Almeidah, Marcelo Knobelf, Ahmad I. Ayeshí, and Surender K. Sharma, ${ }^{\mathrm{j},{ }^{*}}$
${ }^{\text {a D Department }}$ of Physics, Federal University of Maranhao, Sao Luis 65080-805, Brazil
${ }^{\text {b }}$ Laboratory of Magnetic Materials, NFA, Institute of Physics, University of Brasilia, Brasilia 70910-900, Brazil
${ }^{\text {c Universidad Central de Chile, } 8330601 \text { Santiago, Chile }}$
${ }^{\text {d }}$ Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza, 50018, Zaragoza, Spain
${ }^{\text {e Regional }}$ Centre of Advanced Technologies and Materials, Palacky University in Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
${ }^{f}$ Institute of Physics "Gleb Wataghin" (IFGW), University of Campinas (Unicamp), Campinas, SP, Brazil
gUniversidad de Santiago de Chile (USACH), CEDENNA and Departamento de Física, Santiago 9170124, Chile
${ }^{\text {h}}$ SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
iPhysics Program, Department of Math., Stat. and Physics, College of Arts and Sciences, Qatar University, P. O. Box 2713, Doha, Qatar
jDepartment of Physics, Central University of Punjab, Bathinda, 151401, India
*Corresponding author: surender76@gmail.com; ; juliano.denardin@usach.cl

S1: SEM and XRD of $\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}$ (JCPDS: 89-0597)

S2: Size distribution of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ NSs

S3: FT-IR of all the samples, i.e. LERs, SERs, and NSs. The detected peaks $549 \mathrm{~cm}^{-1}$ and $976 \mathrm{~cm}^{-1}$ represent iron oxide ($\mathrm{Fe}_{3} \mathrm{O}_{4}$ here) and phosphate anion, respectively

S4: Simulated M-H hysteresis loop varying the size of NSs.

S5: (a) Simulated M-H hysteresis loop varying number of spheres at NSs diameter 700 nm . (b) Upper row contains full-sphere spin configuration rotating around vortex core axis (yellow arrow), i.e., Z-axis (perpendicular) and lower row with corresponding cut-sphere (hemisphere) to show rod-shaped vortex evolution towards Z-axis (parallel yellow dotted line).

S6: Focus-series of Fresnel contrast imaging technique for two isolated sample NS1 and NS2 and their corresponding reconstructed phase along different field axis.

S7: Hysteresis loss of LERs and SERs measured at 300 K applying field of $+/-50 \mathrm{kOe}$

S8: Energy profile of NSs obtained by means of micro-magnetic simulation where magnetostatic energy (demagnetizing) is dominated by exchange energy.

Table 1: Comparative study of lattice parameter, phase analysis, and magnetic measurement

Sample	Lattice Parameter (nm) ± 0.0005	Phase Analysis				Magnetic Measurement	
		XRD(± 1)		Mössbauer(± 2)		Verwey Transition Temp. (Tv)	$\begin{gathered} \mathrm{M}_{\mathrm{s}} \\ (\mathrm{emu} / \mathrm{g}) \end{gathered}$
		$\mathrm{Fe}_{3} \mathrm{O}_{4}(\%)$;	Fe^{0} (\%)	$\mathrm{Fe}_{3} \mathrm{O}_{4}(\%)$	Fe^{0} (\%)		
Long Rods	$\begin{gathered} \mathrm{Fe}_{3} \mathrm{O}_{4} \\ =0.838 \\ \mathrm{Fe}^{0}=0.286 \end{gathered}$	85.5	14.5	84	16		132
Short rods	$\begin{gathered} \mathrm{Fe}_{3} \mathrm{O}_{4} \\ =0.838 \\ \mathrm{Fe}^{0}=0.286 \end{gathered}$	86	12.4	87	11	122 K	108
Sphere	$\begin{gathered} \mathrm{Fe}_{3} \mathrm{O}_{4} \\ =0.837 \end{gathered}$	100	-	100	-		76

Table 2: Magnetic properties

Sample	Ms (emu/g)	$\mathbf{M r}(\mathbf{e m u} / \mathbf{g})$	$\mathbf{H c}(\mathbf{O e})$	$\mathbf{M r} / \mathbf{M s}$
LERs	132	31	232	0.23
SERs	108	17	229	0.16
NSs	70	10	21	0.14

S9: Electrical measurement device. (a) Four-probe contact and (b) Cryostat
Table 3. ${ }^{57} \mathrm{Fe}$ Hyperfine parameters, isomer shift (I.S.), quadrupole splitting (Q.S), hyperfine field ($B_{h f}$) and spectral area (population distributions) for the diverse iron oxide preparations.

Sample	Phase	site	Hyperfine parameters			
			$\begin{aligned} & \text { I.S. }(\mathrm{mm} / \mathrm{s}) \\ & \pm 0.01 \end{aligned}$	$\begin{aligned} & \text { Q.S.(mm/s) } \\ & \pm 0.01 \end{aligned}$	$\begin{aligned} & \mathrm{B}_{\mathrm{hf}}(\mathrm{~T}) \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \text { Population (\%) } \\ & \pm 2 \end{aligned}$
LERs	$\mathrm{Fe}_{3} \mathrm{O}_{4}$ Fe	$\begin{aligned} & \mathrm{A}\left(\mathrm{Fe}^{3+}\right) \\ & \mathrm{B}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}\right) \\ & \mathrm{A}\left(\mathrm{Fe}^{3+}\right) \end{aligned}$	$\begin{aligned} & \hline 0.29 \\ & 0.69 \\ & 0.32 \\ & -0.02 \end{aligned}$	$\begin{aligned} & \hline-0.07 \\ & -0.15 \\ & -0.002 \\ & 0 \end{aligned}$	$\begin{aligned} & 49.48 \\ & 45.70 \\ & 49.70 \\ & 33.00 \end{aligned}$	$\begin{aligned} & 18.86 \\ & 35.74 \\ & 26.54 \\ & 18.85 \end{aligned}$
SERS	$\mathrm{Fe}_{3} \mathrm{O}_{4}$ Fe	$\begin{aligned} & \mathrm{A}\left(\mathrm{Fe}^{3+}\right) \\ & \mathrm{B}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}\right) \\ & \mathrm{A}\left(\mathrm{Fe}^{3+}\right) \end{aligned}$	$\begin{aligned} & \hline 0.32 \\ & 0.63 \\ & 0.32 \\ & -0.02 \end{aligned}$	$\begin{aligned} & \hline-0.04 \\ & 0.07 \\ & -0.002 \\ & 0 \end{aligned}$	$\begin{aligned} & 49.64 \\ & 45.33 \\ & 49.70 \\ & 32.96 \end{aligned}$	$\begin{array}{\|l\|} \hline 16.43 \\ 33.64 \\ 41.17 \\ 8.8 \end{array}$
NSs	$\mathrm{Fe}_{3} \mathrm{O}_{4}$	A(Fe $\left.{ }^{3+}\right)$ $\mathrm{B}\left(\mathrm{Fe}^{2+}\right)$ $\mathrm{B}\left(\mathrm{Fe}^{3+}\right)$	$\begin{array}{\|l\|} \hline 0.31 \\ 0.79 \\ 0.38 \\ \hline \end{array}$	$\begin{aligned} & \hline-0.064 \\ & -0.37 \\ & 0 \end{aligned}$	$\begin{aligned} & 48.83 \\ & 46.52 \\ & 47.64 \end{aligned}$	55.58 21.20 23.22

The obtained hyperfine fitting results for LERs and SERs can be discussed considering possible model of core/shell structure assuming that some sample region in the core obey the bulk $\mathrm{Fe}_{3} \mathrm{O}_{4}$
composition (i.e., stoichiometric) though the remaining portion are non-stoichiometric at vacancies/defects probably within the shell/surface region, in agreement with previous results reported elsewhere ${ }^{1}$. The presence of stoichiometric $\mathrm{Fe}_{3} \mathrm{O}_{4}$ in these sample is the signature of the possible Verwey phase transition, which occurs near $120 \mathrm{~K}^{2}$. Below the Verwey temperature T_{V}, the valence states of iron ions in both A - and B-sites are mostly stable, though above T_{V} an electron exchange among Fe^{2+} and Fe^{3+} ions in octahedral B -sites appears and hence these valence states get unstable, giving rise to changes in many physical properties along with structural change from monoclinic to cubic, in agreement with the clear observation of Verwey phase transition in ZFC curve, shown in Figure 4a.

Moreover, it is well known that magnetic moment (M) per formula unit for the stoichiometric $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is ' M ' $=4 \mu_{\text {B. }}$. In the present work, the part of non-stoichiometry in LERs, SERs, and NSs led to the magnetic moment ' M ' $=3.76 \mu_{\mathrm{B}}$ with $\delta=0.12$ and hence can be represented by nonstoichiometric formula $\mathrm{Fe}_{2.88} \mathrm{O}_{4}$, ' $\mathrm{M}^{\prime}=3.68 \mu_{\mathrm{B}}$ with $\delta=0.14$ and represented by $\mathrm{Fe}_{2.86} \mathrm{O}_{4}$, and ' M ' $=3.52 \mu_{\mathrm{B}}$ with $\delta=0.16$ and represented by $\mathrm{Fe}_{2.88} \mathrm{O}_{4}$ for LERs, SERs, and NSs respectively. The increased number of vacancies and surface effects from LERs to NSs is believed to be due to a rise in concentration of phosphate anions during synthesis.

References

(1) Lyubutin, I. S.; Lin, C. R.; Korzhetskiy, Y. V.; Dmitrieva, T. V.; Chiang, R. K. Mössbauer Spectroscopy and Magnetic Properties of Hematite/Magnetite Nanocomposites. J. Appl. Phys. 2009, 106 (3). https://doi.org/10.1063/1.3194316.
(2) VERWEY, E. J. W. Electronic Conduction of Magnetite (Fe3O4) and Its Transition Point at Low Temperatures. Nature 1939, 144 (3642), 327-328.
https://doi.org/10.1038/144327b0.

