Perfect Cubic Aromatic Metallo-Borospherenes TM₈B₆(TM = Ni,

Pd, Pt) As Superatoms Matching the 18-Electron Rule

Mei-Zhen Ao,^{a,b} Yuan-Yuan Ma,^c Yue-Wen Mu,^{*a} and Si-Dian Li^{*a} ^aInstitute of Molecular Science, Shanxi University, Taiyuan 030006, China. ^bFenyang College of Shanxi Medical University, Fenyang 032200, China ^cShanxi Institute of Energy, Taiyuan 030006, China *E-mail: ywmu@sxu.edu.cn and lisidian@sxu.edu.cn

Table of Contents

Figure S1. Low-lying isomers of Ni₈B₆.

Figure S2. Low-lying isomers of Pd₈B₆.

Figure S3. Low-lying isomers of Pt₈B₆.

Figure S4. Low-lying isomers of $Ni_8B_6^{-1}$.

- Figure S5. BOMD simulations of (a) $O_h \operatorname{Ni}_6 B_6(1)$, (b) $O_h \operatorname{Pd}_6 B_6(2)$, and (c) $O_h \operatorname{Pt}_6 B_6(3)$ at different temperatures.
- Figure S6 The $1S^21P^61D^{10}18$ -electron configurations of $O_h Pd_8B_6$ (2) and $O_h Pt_8B_6$ (3) and (b) AdNDP bonding patterns of $O_h Pd_8B_6$ (2) and $O_h Pt_8B_6$ (3).

Figure S7. Simulated IR, Raman and UV-vis spectra of (a) $O_h Pd_8B_6$ and (b) $O_h Pt_8B_6$.

Table S1. Optimized cartesian coordinates (x, y, z) of (a) O_h Ni₆B₆ (1), (b) O_h Pd₆B₆

(2), (c) $O_h \operatorname{Pt}_6B_6(3)$, and (d) $O_h \operatorname{Ni}_8B_6^{-1}(1')$ at PBE0/6-311+G(d) level.

Figure S1. Low-lying isomers of Ni_8B_6 with its relative energies indicated in eV at PBE0 and TPSSh (parentheses) levels, respectively.

Figure S2. Low-lying isomers of Pd_8B_6 with its relative energies indicated in eV at PBE0 and TPSSh (parentheses) levels, respectively.

Figure S3. Low-lying isomers of Pt_8B_6 with its relative energies indicated in eV at PBE0 and TPSSh (parentheses) levels, respectively.

Figure S4. Low-lying isomers of monoanion $Ni_8B_6^{-1}$ with its relative energies indicated in eV at PBE0 and TPSSh (parentheses) levels, respectively.

Figure S5. BOMD simulations of (a) $O_h \operatorname{Ni}_6B_6(1)$, (b) $O_h \operatorname{Pd}_6B_6(2)$, and (c) $O_h \operatorname{Pt}_6B_6(3)$ at different temperatures with the RMSD and MAXD indicated in Å.

Figure S7. Simulated IR, Raman and UV-vis spectra of (a) O_h Pd₈B₆ and (b) O_h Pt₈B₆ at PBE0/6-311+G(d) level.

Table S1. Optimized cartesian coordinates (x, y, z) of (a) $O_h \operatorname{Ni}_6B_6$ (1), (b) $O_h \operatorname{Pd}_6B_6$ (1'), (c) $O_h \operatorname{Pt}_6B_6$ (1''), and (d) $O_h \operatorname{Ni}_8B_6^{-1}$ (2) at PBE0/6-311+G(d) level.

(a) $O_h \operatorname{Ni}_6 B_6(1)$			
В	0.00000000	0.00000000	1.79487300
В	0.00000000	1.79487300	0.00000000
В	0.00000000	0.00000000	-1.79487300
В	0.00000000	-1.79487300	0.00000000
В	1.79487300	0.00000000	0.00000000
В	-1.79487300	0.00000000	0.00000000
Ni	-1.30575600	1.30575600	1.30575600
Ni	1.30575600	1.30575600	1.30575600
Ni	1.30575600	1.30575600	-1.30575600
Ni	-1.30575600	1.30575600	-1.30575600
Ni	-1.30575600	-1.30575600	-1.30575600
Ni	-1.30575600	-1.30575600	1.30575600
Ni	1.30575600	-1.30575600	-1.30575600
Ni	1.30575600	-1.30575600	1.30575600
(b) $O_h \operatorname{Pd}_6B_6(2)$			
В	0.00000000	0.00000000	1.97396900
В	0.00000000	1.97396900	0.00000000
В	0.00000000	0.00000000	-1.97396900
В	0.00000000	-1.97396900	0.00000000
В	1.97396900	0.00000000	0.00000000
В	-1.97396900	0.00000000	0.00000000
Pd	-1.40539300	1.40539300	1.40539300
Pd	1.40539300	1.40539300	1.40539300
Pd	-1.40539300	-1.40539300	1.40539300
Pd	1.40539300	-1.40539300	-1.40539300
Pd	-1.40539300	-1.40539300	-1.40539300
Pd	-1.40539300	1.40539300	-1.40539300
Pd	1.40539300	1.40539300	-1.40539300
Pd	1.40539300	-1.40539300	1.40539300
(c) $O_h \operatorname{Pt}_6 \operatorname{B}_6(3)$			
Pt	1.40832700	-1.40832700	-1.40832700
Pt	1.40832700	-1.40832700	1.40832700
Pt	1.40832700	1.40832700	1.40832700
Pt	1.40832700	1.40832700	-1.40832700
Pt	-1.40832700	-1.40832700	-1.40832700
Pt	-1.40832700	-1.40832700	1.40832700
Pt	-1.40832700	1.40832700	1.40832700
Pt	-1.40832700	1.40832700	-1.40832/00
В	0.00000000	0.00000000	2.00454300
В	0.00000000	2.00454300	0.00000000
B	0.00000000	0.00000000	-2.00454300
B	0.00000000	-2.00454300	0.00000000
B	2.00454500	0.00000000	0.00000000
D	-2.00454500	0.00000000	0.00000000
(d) $O_h \operatorname{Ni}_8 \operatorname{B}_6^{-1}(1')$	0.0000000	0.00000000	
В	0.00000000	0.00000000	1.79487300
В	0.00000000	1.79487300	0.00000000

В	0.00000000	0.00000000	-1.79487300
В	0.00000000	-1.79487300	0.00000000
В	1.79487300	0.00000000	0.00000000
В	-1.79487300	0.00000000	0.00000000
Ni	-1.30575600	1.30575600	1.30575600
Ni	1.30575600	1.30575600	1.30575600
Ni	1.30575600	1.30575600	-1.30575600
Ni	-1.30575600	1.30575600	-1.30575600
Ni	-1.30575600	-1.30575600	-1.30575600
Ni	-1.30575600	-1.30575600	1.30575600
Ni	1.30575600	-1.30575600	-1.30575600
Ni	1.30575600	-1.30575600	1.30575600