Electronic Supplementary Information

Dual-emissive solid-state histidine-stabilized gold nanoclusters for applications in white-light generation

Markus Zetes^{a,b,#}, Alexandru-Milentie Hada^{a,b,#}, Milica Todea^{c,d}, Luiza Ioana Gaina^e, Simion Astilean^{a,b}, Ana-Maria Craciun^{a,*}

^a Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271, Cluj-Napoca, Romania
 ^b Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu str., 400084, Cluj-Napoca, Romania
 ^c Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271, Cluj-Napoca, Romania
 ^d Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
 ^e Research Center on Fundamental and Applied Heterochemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 A. Janos Str., 400028, Cluj-Napoca, Romania
 **Corresponding author:* ana.gabudean@ubbcluj.ro

[#] These authors contributed equally to this work

Figure S1. PL spectra of powder His-AuNCs at different excitation wavelengths.

Figure S2. The L-histidine structure with the imidazole ring and the numbering used to assign the signals in ¹H and ¹³C NMR spectra.

L-Histidine

¹H-NMR (600MHz, D₂O, δppm): 7. 56 (s, 1H, Ha), 6.87(s, 1H, Hb), 3,80(dd, 1H, J=8.01Hz, J=4.75Hz, Hd), 3.04(dd, 1H, J=0.74Hz, J=15.4Hz Hc'), 2.94(dd, 1H, J= 8.01Hz, J=15.4Hz, Hc)

¹³C-NMR (150MHz, D₂O, δppm): 28.1Cc, 54.7Cd, 116.6Cb, 132.1Cq, 136.2Ca, 173.9 Cq(C=)O

His-AuNCs

¹H-NMR (600MHz, D₂O, δppm): 7.78(s, 1H, Ha), 6.97(s, 1H, Hb), 3.85(dd, 1H, J=7.8 Hz, J=5.0 Hz, Hd), 3.10(dd, 1H, J= 15.5Hz, J= 5.0Hz, Hc') 3.01(dd, 1H, J=15.5 Hz, J=7.8 Hz, Hc)

 $^{13}\text{C-NMR}$ (150MHz, D2O, δppm): 27.6 Cc, 54.5 Cd, 116.8 Cb, 131.2 Cq, 135.8 Ca, 173.5 Cq(C=)O

Figure S3. ¹H-NMR spectra of L-histidine at 600 MHz in D₂O, including the detail of aliphatic region.

Figure S4. ¹³C-NMR spectra of L-histidine at 150 MHz in D_2O .

Figure S5. The ¹H-¹H COSY spectra of L-histidine.

Figure S6. ¹H-NMR spectra of His-AuNCs at 600 MHz in D₂O, including the detail of aliphatic region.

Figure S7. ¹³C-NMR spectra of His-AuNCs at 150 MHz in D₂O.

Figure S8. The ¹H-¹H COSY spectra of His-AuNCs.

 Table S1. Elemental at% composition at the surface of the His and His-AuNCs samples.

Sample			at%		
Sumpic -	0	С	Ν	Cl	Au
His-AuNCs	15.1	62.4	20.3	2.1	0.1
His	17.6	64.5	17.9	-	-

Figure S9. C1s core level spectra.

Table S2.	Deconvoluti	on of C1s	spectra.
-----------	-------------	-----------	----------

Sample/component	С-С С-Н	%	C-N C-O	%	C=0	%	О=С-ОН N-С=О	%
His-AuNCs	284.6	44.2	285.8	43.3	287.7	11.3	290.3	1.2
His	284.6	39.5	285.8	48.5	288	10.3	289.9	1.7

Figure S10. N1s core level spectra.

Sample/agmnonant	Imino N in	0/	(-NH2) amino group	0/
Sample/component	IM ring	70	C-NH-C (IM-ring)	
His-AuNCs	398.6	37.6	400.5	62.4
His	398.8	44.3	400.7	55.7

Figure S11. O1s core level spectra.

Table S4. Deconvolution of O1s spectra

	НО-С=О		С-ОН		0=C <u>-0</u>	
Sample/component	O=C-N	%	<u>0=</u> C-O	%	С-О-С	%
	C=O					
His-AuNCs	530.8	70.6	532.2	11.1	533.9	18.3
His	531	63.4	532.4	14.4	533.8	22.2

Figure S12. Au4f core level spectra.

Table S5. deconvolution of Au4f spectra

Sample/component	Au4f _{7/2}	%	Au4f _{5/2}	%
His-AuNCs	84.5	57.1	88.2	42.9
His	-	-	-	-

Figure S13. The EI mass spectra of His (a) and His-AuNCs (b).

Figure S14. (a) Lifetime histograms extracted from the FLIM images recorded at different excitation wavelengths (see FLIM images in Figure 4a – bottom row). (b) Fluorescence lifetime decay curves obtained for powder His-AuNCs at different excitation wavelengths.

Table S6. The average PL lifetime obtained for His-AuNCs in solid state under different excitation wavelengths.

Excitation (nm)	375	405	485	520
Average lifetime (ns)	2.38	2.75	2.7	2.15

Average lifetime represents the intensity-weighted average lifetime calculated with the

$$\tau_{av int} = \frac{\sum_{i=1}^{n} a_i \tau_i^2}{\sum_{i=1}^{n} a_i \tau_i};$$

formula $\overline{1}$ τ_i and a_i are the fluorescence lifetime components and corresponding amplitudes, respectively.

Table S7. The CIE color coordinates of His-AuNCs obtained at different excitation wavelengths.

Excitation (nm)	340	365	380	400	420
CIE	0.39/0.35	0.38/0.34	0.37/0.34	0.37/0.34	0.36/0.33

Table S8. The CIE color coordinates of His-AuNCs after thermal treatment (λ_{exc} = 365 nm).

Temperature (°C)	25	50	100	150	200
CIE	0.38/0.34	0.38/0.34	0.38/0.34	0.38/0.34	0.12/0.04