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I. METHOD DETAILS

A. Network properties

For calculating certain network properties only the bonding information of the particle network matters, while
physical properties of the bonded particles – the particle positions and orientations and bonding angles — can be
ignored. Thus, the aggregate can be treated as a non-physical network, where each particle becomes a network node
and each bond between two particles becomes an edge connecting two nodes. With this network representation we
calculate the bond degree distribution, the percolation line and the percentage of particles within network loops of a
certain size. We obtained these network properties with our own software – partially published here [1] – that relies
on Pythons Networkx module [2].

1. Network degree distribution

We used Networkx’ degree() method to return the list of node degrees and subsequently calculated the degree
distribution, the average degree and its standard deviation. The average bond degrees of all particle types are
featured in Fig. 7 and the bond degree distribution in Fig. 8 within the main text.

2. Percolation line

A percolating cluster is defined as cluster of bonded particles that extends beyond the periodic simulation box to
infinity in at least one direction. To test for percolation in practice, we calculate the largest particle cluster over all
nine periodic images of the simulation box and define the cluster as percolating if more than 0.33 of all particles are
in this largest cluster. We chose this threshold of 0.33, because in that case the percolating cluster spans across the
periodic images in at least one direction. To calculate the largest cluster of all periodic images, we first enhance the
network to include the particles and bonds – i.e., the nodes and edges – of all nine periodic images. Note that, to
build this large network efficiently, the only additional information needed is the connectivity between two periodic
images, as for non boundary particles we can just copy the edge connectivity from the original simulation box. We
calculate the largest cluster of this network of periodic images by calling Networkx’ method connected components(),
which returns all connected components, i.e., all clusters, as lists of nodes; the largest of these lists, is then the size
of the largest cluster. If the relative size of this largest cluster of all periodic images, R

N∗9 – where R is the size of the
largest cluster, and N is number of particles within the original simulation box – is larger than than 0.33 the cluster
is defined as percolating. We define the percolation locus for each density as the temperature where configurations
in at least half of the parallel runs contain a percolating cluster; The percolation line is the line that connects the
percolation points across all densities. See Fig. 6 in the main text for a depiction of the percolation lines for all studied
systems.

3. Network Loops

. We detect particle loops of sizes three to six by exploiting Networkx’ all simple paths() method: with
all simple paths(), all paths between two nodes i and j of given a length l, that do not contain repeated nodes,
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can be obtained. We therefore deduce, that all simple paths l > 1 between two neighbouring nodes must be loops.
Hence, all loops of a specific size l can be obtained by calculating all simple paths between all neighbouring nodes.
It is important to note that with this algorithm all loops of size l are counted l times, therefore the obtained loop
counts have to be normalized. To distinguish between loops with only parallel (p), non parallel (np) or mixed loops,
with a mixture of p- and np-bonds, we add the bonding type (p, np) as an edge property to our network and filter the
network for the desired bond-type (p, np, mixed) before evaluating all simple paths. In Fig. 8 within the main text
we show the fraction of particles within the most dominant loops as function of temperatures for all particle types at
the patch position ∆ = 0.2 and a selection of packing fractions φ=[0.05,0.125,0.2,0.3,0.4,0.45,0.5]. Results for ∆ = 0.3
and ∆ = 0.4 are depicted within the Supporting Information Fig. 3 and Fig. 4.

B. Pore properties

We identify and analyse the porosity of networks with specially devised methods. Some of the used algorithms can
be found in our github repository [3].

1. Voxel method

The first step in pore analyses must be the identification of the pore space - i.e., the area of the simulation box
occupied by pores, where a pore is defined as an isolated subspace surrounded by particles. For this purpose, we
developed a volumetric-element (voxel) based method, where the simulation box is split into small squares (voxels) of a
side length lv, where lv is significantly smaller than the side length of a rhombus particle lr. We chose lv ≈ 0.25, as this
size enables us detect the smallest pores, while still allowing us to evaluate the pores for all state points efficiently.
Here it is important to note that lv varies slightly for different packing fractions, with an estimated variation of
≈ 0.005 as the voxels always need to tile space. The voxels are arranged in a square lattice, with eight neighbours
per voxel, where four neighbours share an edge and four share a corner. Periodic boundary conditions apply and
next neighbours of voxels at the simulation box edge are given through minimum image convention. For each voxel
vxi, we estimate the area occupied by rhombus particles. Here, cell-lists ensure efficiency in calculating potentially
overlapping rhombi rhj , where rhombus-center-to-voxel-center distances are small enough for the shapes to possibly
overlap. For each of these overlap candidates, we estimate the area of overlap aij by randomly drawing m = 100
points from the voxel vxi and checking if they overlap with a given rhombi rhj . This overlap-detection procedure is
repeated for all neighbouring rhombi of voxel vxi, and the in total occupied area for vxi is obtained by summing up

ai =
∑Nbi

j=0 aij where Nbi is the number of overlap candidates for voxel vxi. The given voxel vxi is set to a filled state
if the occupied area ai exceeds a threshold tocc = 0.25 and remains in an empty state otherwise.

Note, that we evaluated the pore space also for m = 500 and m = 1000 sample points instead of m = 100, and also
for different overlap thresholds tocc = [0, 0.1, 0.25, 0.3] and found no significant difference.

The pore space can be finally calculated by forming a network of empty voxels, where every empty voxel is a node
and every connection with another empty neighbouring voxcel is an edge; from this empty voxel network we obtain
the pores as lists of voxels by invoking Networkx’s connected components() method. The snapshots in Fig. 9 in the
main text highlight the pores in different colors, while the insets show voxel space with all voxels framed in blue.

2. Pore area

From the voxel method, we obtain the pores as lists of voxels and the pore area (pore size) distribution can be
obtained by calculating the length of these list and multiplying it with the voxel area av = l2v ≈ 0.625. For Fig. 10
and 11 in the main text, we further divide each pore area Ap by the rhombus area Ar = 0.866025, as this gives us the
pore area in units of the particle area.

3. Pore circumference

The circumference Cfm of a pore pm built from K voxels vxk can be obtained by summing up all exposed edges
per voxel,

Cfm =
lv
lr

K∑
k=0

4 −Nedge,k (1)
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where Nedge,k is the number of edge-to-edge voxel neighbours of voxel vxk within that pore, lv is the side length of
a voxel and lr is the particle side length. The pore circumference of all particle types at patch position ∆ = 0.2 and
temperature T = 0.01 can be appreciated in Fig. 10, Panels (a)-(d).

4. Pore asymmetry measures

To estimate the asymmetry of the pores we use two measures, with one measuring the convexity and the other one
the elongation of the pores.

In contrast to the pore area and the circumference, that were evaluated algebraically, for the pore asymmetry
measures the actual pore shape matters. Therefore, as pre-evaluation step, pores that extend beyond the periodic
boundaries, must be stitched together. We perform the stitching of a boundary pore pm by randomly selecting a voxel
n within the pore, and then chose the periodic images of all other voxels to be closest to that voxel.

As this method breaks when the extent of a pore grows beyond half of the simulation box, we restrict ourselves to
pores smaller than 2000 voxels.

To evaluate the convexity of a pore pm, we compare the actual pore area Ap,m, to the area of its convex hull
Aconvex,m. We calculate the convex hull Aconvex,m of a pore pm by forming a point cloud of center and corner
positions of all voxels contained in that pore and then use this point could as input calculation of the convex hull
with the qhull package [4, 5]. We obtain the convexity measure, Ap,m/Aconvex,m as a number between 0 and 1, where
values close to 0 indicates highly non-convex pores, while 1 represents convex pores. Generally, pores with a high
convexity tend towards elliptic or circular shapes, while pores with a high convexity exhibit many dents and fingers.

To evaluate the pore elongation we perform a principal component analysis (PCA) with the aid of Pythons Machine
Learning package scikit-learn [6].The input data for each pore pm is the point cloud of all voxel positions and corners
contained in pm. We use the percent of explained variance of the first principal component, pPCA1, as measure for the
pore elongation: if pPCA1 is close to 1, most of point-cloud’s variance can be explained by the first – the dominant
– component, i.e the clusters are very elongated, while if pPCA1 is closer to 0.5, the point-cloud’s shape is more
spherical.

In Fig. 11 in the main text, the pore convexity (Panels (a)-(d), third column) and the pore elongation (Panels
(a)-(d), fourth column) are plotted for all particle types at patch position ∆ = 0.2 and for different packing fractions
φ = [0.125, 0.15, 0.2, 0.3, 0.4, 0.5] at temperature T = 0.01. Additionally we show the convexity and elongation binned
per size ranges here in the Supporting Information in Fig. 11 and Fig. 12.

II. ADDITIONAL DATA

A. Average bonding affinity for ∆ = 0.3 and ∆ = 0.4

The order parameter 1−2Pnp, with Pnp as the fraction of non-parallel bonds, indicates the average bonding affinity
of the system, where a value of -1 represents system with only non-parallel bonds and 1 designates a completely parallel
assembly. While the main text discusses the bonding affinity of particle topologies with ∆ = 0.2 (see main text, Fig. 7,
Panels (a)-(d), second row), here in the Supporting Information we show the results for ∆ = 0.3 in Fig. 1 and for
∆ = 0.4 in Fig. 2. For dma-as1, dmo-as1, and dmo-s2, we observe similar trends as in ∆ = 0.3 and ∆ = 0.4 as we do
for ∆ = 0.2: For dma-as1 (Panel (a) of Figs. 1 and 2), we observe a dominance in non-parallel bonding already for high
temperatures, that becomes even more prevalent in the broad intermediate temperature range around the percolation
point. Well below the percolation point, non-parallel bonding diminishes and we observe more mixed bonding. In
dmo-as1 (Panel (b) of Figs. 1 and 2), we generally observe more mixed bonding througout all temperatures, with only
a slight predominance of parallel bonds at higher temperatures. For dmo-s2 (Panel (d) of Figs. 1 and 2), we observe a
slight tendency towards parallel bonding for high temperatures. For intermediate temperatures, this parallel tendency
becomes stronger for ∆ = 0.3, while for ∆ = 0.4 it remains minor, and for low temperatures the bonding affinity
becomes more mixed again for both ∆ = 0.3 and ∆ = 0.4.

For dmo-s1, on the other hand we observe a qualitative change in the bonding affinity for ∆ = 0.3 (Panel (c), of
Fig. 1), and ∆ = 0.4 (Panel (c), of Fig. 2), compared to ∆ = 0.2. In the main text (see Fig. 7, Panel (c), scond
row), we had observed for ∆ = 0.2 more mixed bonding for high temperatures that transforms to more non-parallel
bonding for intermediate temperatures, and then back again to more mixed bonding at low temperatures, where
the affinity towards non-parallel bonding is stronger for higher densities, where it peaks at -0.5 for intermediate
temperatures. For ∆ = 0.3 the tendency towards non-parallel bonding becomes significantly weaker, especially for the
high densities, with a – now diminished peak – peak at −0.2 for high densities. For lower densities the propensity to
bind non-parallel is even even further diminished and at the highest density only a slight tendency towards non-parallel
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bonding is visible. For ∆ = 0.4, the tendency towards non-parallel bonding is only visible for higher temperatures, at
intermediate temperatures, this tendency reverses, and parallel bonding becomes more prevalent instead. While this
additional positive peak can we observed for all densities, it is strongest for low packing fractions, where it peaks at
0.3. At low temperatures, we again spot more mixed bonding across all densities.

B. Particle Loops for ∆ = 0.3 and ∆ = 04

In the main text we analyse particle loops, i.e loops within the network graph, for ∆ = 0.2 and find that in the
vicinity of the percolation points, a majority of particles are bound within loops of size three to six (see Fig. 8, Panels
(a)-(d) in the main text). Here, in the Supporting Information we report the occurrence of the most dominant loops
as function of temperature for ∆ = 0.3 (Fig 3, Panels (a)-(d)) and ∆ = 0.4 (Fig. 4, Panels (a)-(d)). Generally we find
that for the dma-as1, the dmo-as1 and dmo-s2 system, the percentage and type of the dominant loops is qualitatively
similar to ∆ = 0.2. More specifally, in the dmo-as1 system (Figs. 3 and 4, Panel (a)) non-parallel (np) particle loops
of size three – boxes – make up the majority of present loops for all ∆-values and packing fractions. Their occurrence
at high temperatures is density dependent, and for high densities they already occur to large amount at the highest
temperatures. For intermediate temperatures near the percolation points boxes occur at 60-80% for all densities and
even far below the percolation line, about 20% of particles remain bonded in boxes across all packing fractions. For
both dmo-as1 (Figs. 3 and 4, Panel (b)) and dmo-s2 (Figs. 3 and 4, Panel (d)), we observe either parallel (p) or mixed
(p- and np-bonds) six particle loops as the dominant loop motives; at high temperatures we detect that about 20%
of particles are bonded these motives for high densities, with the percentage decreasing progressively as the density
becomes lower; for intermediate temperatures, be observe up to 80% of p-bonded and mixed loops for all densities and
for low temperatures this amount drops to 20% for all packings. In contrast, in dmo-s1, ∆ = 0.3 (Fig. 3, Panel (c))
and ∆ = 0.4-systems (Fig. 4, Panel (c)) differ qualitatively from the ∆ = 0.2 case. While for ∆ = 0.2, the dominant
loop motives are 5-np and 6-np loops – so called 5-stars and 6-stars – for ∆ = 0.3 mixed (with p- and np-bonds) six
particle loops become more prevalent than stars for all temperatures and densities, and for ∆ = 0.4 it is p-bonded
as well as mixed loops that overshadow the occurrence of stars. At high temperatures, mixed and p-bonded/mixed
loops occur at a significant percentage for higher densities for ∆ = 0.3 and 0.4 respectively, but remain insignificant
for lower densities; at intermediate temperatures 60-80% percent of particles reside within mixed and p-boned/mixed
loops across all densities, while for low temperatures their amount drops to 10-20%. To illustrate these qualitative
changes further, we show the percentages of box loops, star loops, parallel loops and mixed loops for dmo-s1 ∆ = 0.2
(Fig. 5), ∆ = 0.3 (Fig. 6) and ∆ = 0.4 (Fig. 7).

C. Bond degree distribution for ∆ = 0.3 and ∆ = 0.4

In the main text, we report the bond degree distribution of all patch topologies for the patch position ∆ = 0.2
and the packing fraction φ = 0.2 as well as three temperatures T = 0.14, 0.10 and 0.01 Here, in the Supporting
Information we additionally discuss the bond degree distribution for ∆ = 0.3 in Fig. 8 and of ∆ = 0.4 in Fig. 9.
We find that the bond degree distribution for ∆ = 0.3 qualitatively exhibits same behaviour as ∆ = 0.2: for high
temperatures at T = 0.14 (Fig. 8, Panel (a)), we observe all bonding scenarios from zero to fully bonded (four), with
the majority of particles bonded to only one neighbour particle. While dmo-as1, dmo-s1 and dmo-s2 show a similar
bonding distribution, in dma-as1 we observe a higher percentage of two-bonds, which indicates the presence of the
three particle box clusters already at high temperatures. At intermediate temperatures, at T = 0.10 (Fig. 8, Panel
(b)), we observe that the majority of particles has two or three neighbours, which – as with ∆ = 0.2 – hints at the
presence of connected clusters of loops described in Fig. 3. For the lowest studied temperatures, T = 0.01 (Fig. 8,
Panel (c)), we find that two-particle bonds become the prevalent bonding type, which indicates the increased chaining
of the network. In ∆ = 0.4, for T = 0.14 and T = 0.01 (Fig. 8, Panel (a) and (d)), the bond degree distribution
remains qualitatively similar to ∆ = 0.2 and ∆ = 0.3. On the other hand for intermediate temperatures T = 0.10
(Fig. 8, Panel (b), while the majority of particles of all patch topologies still has two- or three neighbours, we spot
a significantly higher amount of four-bonded particles for dmo-s1 and dma-as1. At visual inspection of simulation
snapshots we find that some of these four-bonded particles reside in fully-bonded finite clusters. We conclude that
for the more symmetric ∆ = 0.4 patch positions, the bonding strain due to the patch asymmetry is already reduced
to such that fully bonded finite clusters become more favorable and do co-occur with two- and three-bonded finite
clusters.
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D. Pore measures

1. Pore circumference

Besides the pore area, which is discussed in the main text, we also evaluated the pore circumference in units of the
rhombi side length lr according the formula in Eq. 1 at the lowest temperature T = 0.01 for the patch position ∆ = 0.2
and for different packing fractions φ = [0.125, 0.15, 0.2, 0.3, 0.5]. Analogously to the pore area, the scatter plot of pore
circumferences of all patch topologies at the lowest packing fraction of φ = 0.125 (Fig. 10, Panels (a)-(d) top row, blue
scatter) shows a split between pore circumferences smaller than 200 – representing the small and mid-size pores and
pore circumferences of > 4000, representing the void space. As the density increases, the difference in circumference
between void space and pore space becomes smaller, as the large void space is cut into smaller pieces by bonded
particles sharing a smaller simulation box, and at φ = 0.3 (Fig. 10, Panels (a)-(d) first row, red scatter), no significant
difference is visible anymore between the circumference of void and pores. The kernel density estimation (KDE) – a
parameter free estimation of the probability density – of the pore circumference (see Fig. 10, Panels (a)-(d), second
row) shows that for low packing fractions of φ = 0.125 and φ = 0.15 the pore circumferences of dmo-s1 with an
KDE-estimated length of around ≈ 50 and – to a lesser degree – dmo-s2 with a length of ≈ 40 are longer than the
circumferences of dma-as1 and dmo-as1 with lengths of ≈ 30.

2. Dependency of asymmetry measures on pore size

In the main text we evaluated the convexity and the elongation of pores with pore areas smaller than 1000 (see
Fig. 11, Panels (a)-(d), third and fourth column in the main text) voxels and found that, for both convexity and
elongation, every particle type has its own typical peak patterns, discern-able by the relative height and sharpness of
the peaks. Here, we investigate in detail which pore sizes are responsible for these unique peak patterns by evaluating
the convexity and the pore elongation for pores of different size ranges. The results are shown in Fig. 11, Panels
(a)-(d) for the convexity measure and in Fig. 12, Panels (a)-(d) for the elongation measure. It is important to note
that, for this analysis the pore area is given as the number of voxels within a pore, as this enables us to better trace
the asymmetry measures back to the pore shapes. Generally we observe that it is mainly the small pores, that are
smaller than 20 voxels, that are responsible for the unique peak patterns in both measures. More specifically in the
convexity measure (see Fig. 11, Panels (a)-(d), the peaks very close to one, indicating convex pores, are due to pores
of sizes < 10, the peaks in the vicinity of 0.68 are due to pores between sizes 5 and 20, while the peaks near 0.85
appear for pores of size 10− 20. While these three peaks do occur in all patch topologies, the relative height of these
three peaks differs and we argue that is this difference that largely defines the unique peak patterns for each system.
For pores beyond the size of 20, the peaks at 0.68 and 0.85 broaden and become one wider peak, while the peak close
to one – signifying rather convex pores – disappears. Finally, we observe that at the highest density (Fig 11, Panels
(a)-(d), last column), the pore convexity is significantly lower for larger pores 200 − 1000, representing a trend that
can be spotted for all patch topologies.

Taking a closer look at the elongation at different size ranges (see Fig 12, Panels (a)-(d)), an analogous picture
forms: for pores of sizes < 5, the elongation measures peaks at 0.5 – indicating rather symmetrical pore shapes and
for pores between 5 and 10, this 0.5-peak vanishes, and instead two peaks – a larger one at 0.65 and a smaller one at
0.75 appear. While all patch topologies and densities show these exact distinct peaks for pores of size 0 − 5 and size
5 − 10 – albeit with different heights — for pore sizes between between 10 and 20 more distinguished peaks appear
between 0.65 and 0.9, but in these cases, the exact number of the peaks as well as their position and width differs for
different patch-topologies and densities. Here it is interesting to note, that despite these peak pattern differences for
different densities in each system for pore sizes 10 − 20, when evaluated over all pores sizes, a unique peak pattern is
retained for each systems across all densities. Moving to pores > 20, we find a severe broadening of the distributions
for all systems, to extent where no distinct peak can be identified. We interpret the results such that, while pores
with sizes < 20 do have distinct shapes with unique peak patterns per particle type and density, larger pores do occur
in all elongations.

[1] C. Karner, GelAnalyser, https://github.com/OljaOctagon/GelAnalyser (2023-2030).
[2] A. A. Hagberg, D. A. Schult, and P. J. Swart, in Proceedings of the 7th Python in Science Conference, edited by G. Varo-

quaux, T. Vaught, and J. Millman (Pasadena, CA USA, 2008), pp. 11 – 15.
[3] C. Karner, PoreAnalyser, https://github.com/OljaOctagon/PoreAnalyser (2023-2030).



6

0.02 0.05 0.08 0.11 0.14
T

0.5

0.0

0.5

1
2*

P n
p

a.) dma-as1 = 0.05
= 0.125
= 0.2
= 0.3

= 0.4
= 0.45
= 0.5

0.02 0.05 0.08 0.11 0.14
T

0.5

0.0

0.5

1
2*

P n
p

b.) dmo-as1

= 0.05
= 0.125
= 0.2
= 0.3

= 0.4
= 0.45
= 0.5

0.02 0.05 0.08 0.11 0.14
T

0.5

0.0

0.5

1
2*

P n
p

c.) dmo-s1

= 0.05
= 0.125
= 0.2
= 0.3

= 0.4
= 0.45
= 0.5

0.02 0.05 0.08 0.11 0.14
T

0.5

0.0

0.5

1
2*

P n
p

d.) dmo-s2

= 0.05
= 0.125
= 0.2
= 0.3

= 0.4
= 0.45
= 0.5

FIG. 1: Bond orientation order parameter 1 − 2 ∗ Pnp as function of temperature T , at different packing fractions φ =
[0.05, 0.125, 0.2, 0.3, 0.4, 0.45, 0.5] for particle topolgies with patch position ∆ = 0.3: top-bottom Panels (a) dma-as1 (burgundi),
(b) dmo-as1 (grey), (c) dmo-s1 (lilac) and (d) dmo-s2 (green), as labelled. Red stars highlight the state point at which
percolation occurs.
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FIG. 2: Bond orientation order parameter 1 − 2 ∗ Pnp as function of temperature T , at different packing fractions φ =
[0.05, 0.125, 0.2, 0.3, 0.4, 0.45, 0.5] for particle topolgies with patch position ∆ = 0.4: top-bottom Panels (a) dma-as1 (burgundi),
(b) dmo-as1 (grey), (c) dmo-s1 (lilac) and (d) dmo-s2 (green), as labelled. Red stars highlight the state point at which
percolation occurs.
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FIG. 3: Fraction of dominant loops type for each particle type as function of temperature T, at patch position ∆ = 0.3 and
packing fraction φ = 0.2. Panel (a): fraction of dma-as1 particles bonded in open box loops. Panel (b): fraction of dmo-as1
particles bonded in parallel and mixed (parallel and non-parallel) 6-particle loops. Panel (c): fraction of dmo-s1 particles
bonded in non-parallel 5- and 6-particle loops. Panel (d): fraction of dmo-s2 particles bonded in parallel and mixed (parallel
and non-parallel) 6-particle loops. Red stars highlight the state point at which percolation occurs.
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FIG. 4: Fraction of dominant loops type for each particle type as function of temperature T, at patch position ∆ = 0.4 and
packing fraction φ = 0.2. Panel (a): fraction of dma-as1 particles bonded in open box loops. Panel (b): fraction of dmo-as1
particles bonded in parallel and mixed (parallel and non-parallel) 6-particle loops. Panel (c): fraction of dmo-s1 particles
bonded in non-parallel 5- and 6-particle loops. Panel (d): fraction of dmo-s2 particles bonded in parallel and mixed (parallel
and non-parallel) 6-particle loops. Red stars highlight the state point at which percolation occurs.
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FIG. 5: Fraction of different loops types for dmo-s1 as function of temperature T, at patch position ∆ = 0.2 and packing
fraction φ = 0.2. Panel (a): fraction of dmo-s1 particles bonded in open box loops; Panel (b): fraction of dmo-s1 particles
bonded non-parallel 5- and 6-particle loops (stars); Panel (c): fraction of dmo-s1 particles bonded in parallel 6-particle loops.
Panel (d): fraction of dmo-s1 particles bonded in parallel and mixed (parallel and non-parallel) 6-particle loops. Red stars
highlight the state point at which percolation occurs.
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FIG. 6: Fraction of different loops types for dmo-s1 as function of temperature T, at patch position ∆ = 0.3 and packing
fraction φ = 0.2. Panel (a): fraction of dmo-s1 particles bonded in open box loops; Panel (b): fraction of dmo-s1 particles
bonded non-parallel 5- and 6-particle loops (stars); Panel (c): fraction of dmo-s1 particles bonded in parallel 6-particle loops.
Panel (d): fraction of dmo-s1 particles bonded in parallel and mixed (parallel and non-parallel) 6-particle loops. Red stars
highlight the state point at which percolation occurs.
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FIG. 7: Fraction of different loops types for dmo-s1 as function of temperature T, at patch position ∆ = 0.4 and packing
fraction φ = 0.2. Panel (a): fraction of dmo-s1 particles bonded in open box loops; Panel (b): fraction of dmo-s1 particles
bonded non-parallel 5- and 6-particle loops (stars); Panel (c): fraction of dmo-s1 particles bonded in parallel 6-particle loops.
Panel (d): fraction of dmo-s1 particles bonded in parallel and mixed (parallel and non-parallel) 6-particle loops. Red stars
highlight the state point at which percolation occurs.
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FIG. 8: Bond degree histogram for all particle types -dma-as1 (burgundi), dmo-as1 (gray), dmo-s1 (lilac) and dmo-s2 (green)
(as labelled) with patch position ∆ = 0.3 and packing fraction φ = 0.2 for (a): temperature T = 0.14, (b) temperature T = 0.10
and (c) temperature T = 0.01.
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FIG. 9: Bond degree histogram for all particle types -dma-as1 (burgundi), dmo-as1 (gray), dmo-s1 (lilac) and dmo-s2 (green)
(as labelled) with patch position ∆ = 0.4 and packing fraction φ = 0.2 for (a): temperature T = 0.14, (b) temperature T = 0.10
and (c) temperature T = 0.01.
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FIG. 10: Pore circumference scatter plots (top row) and pore circumference kernel-density plots (bottom row) for all particle
types at patch position ∆ = 0.2 and packing fractions φ = [0.125, 0.15, 0.2, 0.3, 0.5]. Panel (a): dma-as1; Panel (b): dmo-as1;
Panel (c): dmo-s1; Panel (d): dmo-s2. For better visibility of the scatter, we added random noise to each scatter point in
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FIG. 11: Convexity measure for different pore size ranges at patch position ∆ = 0.2, temperature T = 0.01 and packing
fractions φ = [0.125, 0.15, 0.2, 0.3, 0.4, 0.5] for each particle type: Panel (a): dma-as1; Panel (b): dmo-as1; Panel (c): dmo-s1
(c); Panel (d) dmo-s2. Each Panel contains seven plots of the convexity measure with pore sizes increasing from left to right::
pore sizes (0-5), pore sizes (5,10), pore sizes (10-20), pore sizes (20-30), pore sizes (30-100), pore sizes (100-200), pore sizes
(200-1000). Note that in this case the pore size is given as number of voxels associated with that pore.
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FIG. 12: Elongation measure for different pore size ranges at patch position ∆ = 0.2, temperature T = 0.01 and packing
fractions φ = [0.125, 0.15, 0.2, 0.3, 0.4, 0.5] for each particle type: Panel (a): dma-as1; Panel (b): dmo-as1; Panel (c): dmo-s1
(c); Panel (d) dmo-s2. Each Panel contains seven plots of the elongation measure with pore sizes increasing from left to right:
pore sizes (0-5), pore sizes (5,10), pore sizes (10-20), pore sizes (20-30), pore sizes (30-100), pore sizes (100-200), pore sizes
(200-1000). Note that in this case the pore size is given as number of voxels associated with that pore.
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