## Electronic Supplementary Material (ESI) for Nanoscale Advances.

## **Supporting Information**

## Large-scale production of MXenes as nanoknives for antibacterial application

Yuchen Liu,<sup>a, b</sup> Xing Chen,<sup>c</sup> Jiazhi Sun,<sup>c</sup> Nuo Xu,<sup>a</sup> Qi Tang,<sup>a</sup> Jie Ren,<sup>a</sup> Cheng Chen,<sup>\*a</sup> Weiwei Lei,<sup>\*b</sup> Chao

Zhang<sup>a</sup> and Dan Liu\*<sup>b</sup>

<sup>a</sup>School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road,

Hefei, 230036, Anhui, China

<sup>b</sup>Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220,

Australia

<sup>c</sup>Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection,

Anhui Agricultural University, Hefei 230036, China

\*Correspondence: chc@ahau.edu.cn; weiwei.lei@deakin.edu.au; dan.liu@deakin.edu.au



Fig. S1 Scanning electron microscopy image of the pristine Ti<sub>3</sub>AlC<sub>2</sub> MAX phase.



Fig. S2 The size distribution of the prepared  $E-Ti_3C_2$  MXene nanosheets.



Fig. S3 (a) Digital photo of  $E-Ti_3C_2$  on a nylon substrate. (b) Water contact angle of  $E-Ti_3C_2$  on a nylon substrate.



Fig. S4 High-resolution X-ray photoelectron spectroscopy results of the pristine  $Ti_3AlC_2$  MAX phase and E- $Ti_3C_2$  in the Al 2p region.



Fig. S5 Fourier transform infrared spectrum of the  $E-Ti_3C_2$  MXene.



Fig. S6 Photographs of the first replicate samples of *E. coli* incubated in non-E-Ti<sub>3</sub>C<sub>2</sub>-treated and E-Ti<sub>3</sub>C<sub>2</sub>-treated LB media for 12 hours.



**Fig. S7** Photographs of the second replicate samples of *E. coli* incubated in non-E-Ti<sub>3</sub>C<sub>2</sub>-treated and E-Ti<sub>3</sub>C<sub>2</sub>-treated LB media for 12 hours.



**Fig. S8** Magnitude of the lysis halo from the same dose of lysozyme on *E. coli* with thickened (right) and normal cell walls (left).



Fig. S9 Photographs of the first replicate samples of *E. coli* with thickened cell walls, incubated in non-E-Ti<sub>3</sub>C<sub>2</sub>-treated and E-Ti<sub>3</sub>C<sub>2</sub>-treated LB media for 12 hours.



Fig. S10 Photographs of the second replicate samples of *E. coli* with thickened cell walls, incubated in non-E-Ti<sub>3</sub>C<sub>2</sub>-treated and E-Ti<sub>3</sub>C<sub>2</sub>-treated LB media for 12 hours.



Fig. S11 Photographs of E. coli incubated in non-W-Ti<sub>3</sub>C<sub>2</sub>-treated and W-Ti<sub>3</sub>C<sub>2</sub>-treated LB media for

12 hours.



Fig. S12 Photographs of the first replicate samples of *E. coli* incubated in non-W-Ti<sub>3</sub>C<sub>2</sub>-treated and W-Ti<sub>3</sub>C<sub>2</sub>-treated LB media for 12 hours.



**Fig. S13** Photographs of the second replicate samples of *E. coli* incubated in non-W-Ti<sub>3</sub>C<sub>2</sub>-treated and W-Ti<sub>3</sub>C<sub>2</sub>-treated LB media for 12 hours.



Fig. S14 SEM image of W-Ti<sub>3</sub>C<sub>2</sub> prepared through conventional wet chemical etching method.

 Table S1. Energy consumption of ECO-ME and conventional wet chemical etching methods.

| Preparation<br>methods         | Equipment Model                                            | Working<br>hours (h) | Equipment-rated<br>power (kW) | Electricity<br>consumption<br>(kW*h) |
|--------------------------------|------------------------------------------------------------|----------------------|-------------------------------|--------------------------------------|
| Wet-chemical<br>etching method | Heidolph <sup>®</sup> Hei-<br>Connect Magnetic<br>Stirrers | 30                   | 0.8                           | 24                                   |
| ECO-ME method                  | MITR® YXQM-<br>0.4L                                        | 2                    | 0.55                          | 1.1                                  |

**Table S2.** Elemental composition of the pristine MAX phase and  $E-Ti_3C_2$ .

| Sample                           | Element (atomic%) |       |       |       |       |  |
|----------------------------------|-------------------|-------|-------|-------|-------|--|
|                                  | С                 | 0     | Ti    | Al    | F     |  |
| Pristine MAX<br>Phase            | 37.65             | 37.45 | 14.76 | 10.14 | -     |  |
| E-Ti <sub>3</sub> C <sub>2</sub> | 42.25             | 19.14 | 27.64 | -     | 10.97 |  |

| Region | Binding energy (eV) | Assigned to                       | Reference |
|--------|---------------------|-----------------------------------|-----------|
| Ti 2p  | 455.0               | Ti–C                              | 1         |
|        | 456.0               | (OH)–Ti <sup>2+</sup> –C          | 2         |
|        | 457.2 (462.4)       | (OH)–Ti <sup>3+</sup> –C          | 3 4       |
|        | 458.5 (463.9)       | TiO <sub>2</sub>                  | 5, 6      |
|        | 459.4               | TiO <sub>2-x</sub> F <sub>x</sub> | 7         |
|        | 461.1               | C-Ti-(O/OH)                       | 8         |
| C 1s   | 281.8               | C–Ti                              | 8         |
|        | 284.6               | C–C                               | 8         |
|        | 286.7               | C-0                               | 8         |
|        | 288.39              | O–C=O                             | 8         |
| O 1s   | 529.7               | TiO <sub>2</sub>                  | 9         |
|        | 530.8               | TiO <sub>2-x</sub> F <sub>x</sub> | 10        |
|        | 532.2               | C–Ti–(OH) <sub>x</sub>            | 11        |
| F 1s   | 684.9               | C–Ti–F                            | 8         |
|        | 685.9               | TiO <sub>2-x</sub> F <sub>x</sub> | 10        |

Table S3. Summary of XPS peak fitting values for the prepared  $E-Ti_3C_2$  MXene

## References

- 1 V. Schier, H. J. Michel and J. Halbritter, Fresenius J. Anal. Chem., 1993, 346, 227-232.
- 2 X. Wang, F. You, L. Wu, R. Ji, X. Wen, B. Fan, G. Tong, D. Chen and W. Wu, *J. Alloys Compd.*, 2022, **918**, 165740.
- 3 S. Ding, X. Jin, B. Wang, Z. Niu, J. Ma, X. Zhao, M. Yang, C. Wang, Q. Shi and X. Li, *ACS Appl. Nano Mater.*, 2023, **6**, 11810-11821.
- 4 G. S. Park, D. H. Ho, B. Lyu, S. Jeon, D. Y. Ryu, D. W. Kim, N. Lee, S. Kim, Y. J. Song, S. B. Jo and J. H. Cho, *Sci. Adv.*, **8**, 5299.
- 5 S. Ahn, T.-H. Han, K. Maleski, J. Song, Y.-H. Kim, M.-H. Park, H. Zhou, S. Yoo, Y. Gogotsi and T.-W. Lee, *Adv. Mater.*, 2020, **32**, 2000919.
- 6 Z. Fan, Y. Wang, Z. Xie, X. Xu, Y. Yuan, Z. Cheng and Y. Liu, Nanoscale, 2018, 10, 9642-9652.
- 7 A. Pazniak, P. Bazhin, N. Shplis, E. Kolesnikov, I. Shchetinin, A. Komissarov, J. Polcak, A. Stolin and D. Kuznetsov, *Mater. Des.*, 2019, **183**, 108143.
- 8 V. Natu, M. Benchakar, C. Canaff, A. Habrioux, S. Célérier and M. W. Barsoum, *Matter*, 2021, 4, 1224-1251.
- 9 U. Diebold and T. E. Madey, Surf. Sci. Spectra, 1996, 4, 227-231.
- 10 T. Tanuma, H. Okamoto, K. Ohnishi, S. Morikawa and T. Suzuki, Catal. Letters, 2010, 136, 77-82.
- 11 S. Yamamoto, H. Bluhm, K. Andersson, G. Ketteler, H. Ogasawara, M. Salmeron and A. Nilsson,
- J. Condens. Matter Phys., 2008, 20, 184025.