Supporting Information

Comparison of penetration depth in mouse brain in vivo through 3PF imaging labelled by AIE nano particles and THG imaging within the 1700 nm window

Yingxian Zhang,^a Jincheng Zhong,^a Hui Cheng,^a Jie Huang,^a Zhenhui Li,^a Chi Zhang,^a Zhiang Gao,^a Zhourui Xu,^b Gaixia Xu,^b Ping Qiu *^a and Ke Wang *^a

^a Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

^b School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.

E-mail: pingqiu@szu.edu.cn, kewangfs@szu.edu.cn

Fig. S1 The experimental setup of 3PM imaging system. HWP: half-wave plate; PBS: polarization beam splitter; L1 and L2: focusing and collimating lens; LPF: long-pass filter; NDF: neutral density filter; M1 and M2: silver-coated mirror; DC: dichroic mirror; Filter: band-pass filter; PMT: GaAsP photo-multiplier tube; OL: objective lens.

Wavelength	Materials	MPM	Concentration	Depth	Repetition rate	Ref.
(nm)				(µm)	(MHz)	
1600	MTTCM NPs	3PM	1 mM	840	6	*
1610	BONAPs	3PM	50 mg/kg	1680	1	[1]
1617	ICG	2PM	2 mM	2000	1	[2]
1620	SR101	3PM	3.3 mg/ml	1340	1	[3]
1660	MTTCM NPs	3PM	2 mM	1900	1	[4]
1665	Texas red	3PM	700 μM	1650	1	[5]
1665	Qtracker655	3PM	2 µM	2100	1	[6]
1665	DPNA-NZ	3PM	2 mM	1700	1	[7]
1665	DPCZ-BT	3PM	2 mM	1860	1	[8]
1700	DCTBT	2PM	2 mM	2180	1	[9]
1700	MTTCM NPs	3PM	1 mM	890	6	*
1720	OEFT NPs	3PM	550 μM	1696	1	[10]
1800	MTTCM NPs	3PM	1 mM	810	6	*

Table S1 In vivo mouse deep-brain imaging of different fluorescence indicator with 1700nm window

* Experimental parameters from this article

Note: The repetition rate of the laser used in this experiment was 6 MHz, while all other experiments used a repetition rate of 1 MHz. Because of the higher repetition rate used in this experiment, the pulse energy is lower and the imaging depth is smaller.

References

- M. X. Liu, B. B. Gu, W. B. Wu, Y. K. Duan, H. J. Liu, X. Q. Deng, M. Z. Fan, X. M. Wang, X. B. Wei, K. T. Yong, K. Wang, G. X. Xu and B. Liu, *Chem. Mat.*, 2020, **32**, 6437-6443.
- H. Cheng, S. Tong, X. Q. Deng, H. J. Liu, Y. Du, C. He, P. Qiu and K. Wang, *Optics Letters*, 2019, 44, 4432-4435.
- 3. H. J. Liu, J. Q. Wang, Z. W. Zhuang, J. X. He, W. H. Wen, P. Qiu and K. Wang, *Journal of Biophotonics*, 2019, **12**, 10.
- 4. X. Q. Deng, Z. R. Xu, Z. J. Zhang, W. J. Zhang, J. A. Li, L. Zheng, X. L. Chen, Y. Pan, P. Qiu, D. Wang, G. Xu and K. Wang, *Advanced Functional Materials*, 2022, **32**, 2205151.
- W. H. Wen, Y. X. Wang, H. J. Liu, K. Wang, P. Qiu and K. Wang, *Journal of Biophotonics*, 2018, 11, 6.
- H. Liu, X. Deng, S. Tong, C. He, H. Cheng, Z. Zhuang, M. Gan, J. Li, W. Xie, P. Qiu and K. Wang, Nano Letters, 2019, 19, 5260-5265.
- Z. R. Xu, Z. J. Zhang, X. Q. Deng, J. A. Li, Y. H. Jiang, W. C. Law, C. B. Yang, W. J. Zhang, X. L. Chen, K. Wang, D. Wang and G. X. Xu, *Acs Nano*, 2022, **16**, 6712-6724.
- 8. J. A. Li, Z. J. Zhang, X. Q. Deng, Z. R. Xu, L. Wang, G. X. Xu, K. Wang, D. Wang and B. Z. Tang, *Biomaterials*, 2022, **287**, 11.
- 9. D. Li, X. Q. Deng, Z. R. Xu, D. L. Wang, G. X. Xu, P. Y. Zhang, P. Qiu, W. X. Xie, D. Wang, B. Z. Tang and K. Wang, *Advanced Functional Materials*, 2023, **33**, 2303967.
- 10. S. L. Li, X. Q. Deng, H. Cheng, X. Z. Li, Y. P. Wan, C. Cao, J. Yu, Y. Liu, Y. Yuan, K. Wang and C. S. Lee, *Acs Nano*, 2022, **16**, 12480-12487.