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Extraction of the supercurrent distribution with the Dynes-Fulton method

For a Josephson junction exposed to a perpendicular magnetic field , the magnitude of the critical 𝐵

current  is strongly correlated with the supercurrent distribution . To understand this 𝐼𝑐(𝐵) 𝐽𝑐(𝑥)

relationship, we first consider the complex Fourier transform of , which yields a complex 𝐽𝑐(𝑥)

critical current function,

               (1)
                                          𝐼𝑐(𝐵) = |𝐼𝑐(𝐵)| = | + ∞

∫
‒ ∞

𝐽𝑐(𝑥)𝑒𝑥𝑝(
𝑖2𝜋𝐿𝑒𝑓𝑓𝐵𝑥

Φ0
)𝑑𝑥|

where  represents the dimension along the width of the junction, and   stands for 𝑥 𝐿𝑒𝑓𝑓 = 𝐿 + 2𝜆

the effective length of the junction. Additionally,  is the magnetic flux quantum with a value of Φ0

. In the following, we will derive  from the observed  pattern using the method 

ℎ
2𝑒 𝐽𝑐(𝑥) 𝐼𝑐(𝐵)

proposed by Dynes and Fulton [1].

When the current distribution is symmetric, i.e., the odd part of  vanishes in the 
𝑒𝑥𝑝(

𝑖2𝜋𝐿𝑒𝑓𝑓𝐵𝑥

Φ0
)

integral, Eq. (1) becomes . However, if the current distribution 
𝐼𝐸(𝐵) =

+ ∞

∫
‒ ∞

𝐽𝐸(𝑥)𝑐𝑜𝑠(2𝜋𝐿𝑒𝑓𝑓𝐵𝑥

Φ0
)𝑑𝑥

has a small odd component, we also need to consider the Fourier transform of this odd component, 

. Thus, the overall complex critical current is
𝐼𝑂(𝐵) =

+ ∞

∫
‒ ∞

𝐽𝑂(𝑥)𝑠𝑖𝑛(2𝜋𝐿𝑒𝑓𝑓𝐵𝑥

Φ0
)𝑑𝑥

                         (2)𝐼𝑐(𝐵) = 𝐼𝐸(𝐵) + 𝑖𝐼𝑂(𝐵)

The observed critical current  is given by . Through appropriate 𝐼𝑐(𝐵) 𝐼𝑐(𝐵) = 𝐼2
𝐸(𝐵) + 𝐼2

𝑂(𝐵)

mathematical manipulation, we can recover  from the observed . The even component, 𝐽𝑐(𝑥) 𝐼𝑐(𝐵)

, is obtained by flipping the sign of alternate lobes in the  pattern, as shown in 𝐼𝐸(𝐵) 𝐼𝑐(𝐵)

Supplementary Fig. 1 (b). The odd component, , is derived by interpolating between the 𝐼𝑂(𝐵)

minima of  and flipping sign between lobes, as shown in Supplementary Fig. 1 (c). Finally, by 𝐼𝑐(𝐵)

performing an inverse Fourier transform of , we can obtain the supercurrent density profile, 𝐼𝑐(𝐵)

.              (3)
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1
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Figure S1. (a) Field dependence of the critical current . (b) The critical current  𝐼𝑐(𝐵) 𝐼𝐸(𝐵)

corresponding to the even component of the current distribution . (c) The critical current 𝐽𝐸(𝑥)

 corresponding to the odd component of the current distribution . (d) The derived current 𝐼𝑂(𝐵) 𝐽𝑂(𝑥)

density distribution .𝐽𝑐(𝑥)

Fig

ure S2. Asymmetric edge supercurrents were also observed in another Nb/MoTe2/Nb Josephson 
junction with =400 nm, =3.94 m, and =50 nm. (a) Color map of the differential resistance 𝐿 𝑊 𝑡



versus the current bias and magnetic field at =0.9 K. (b) The supercurrent density distribution 𝑇

derived with the Dynes-Fulton method, clearly showing the presence of edge states with 
characteristic widths of 650 nm and 710 nm, respectively. 
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