Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information for

Hollow Ru/RuO₂ nanospheres with nanoparticulate shells for high performance electrocatalytic oxygen evolution reactions

Kyoungil Cho,^{‡a} June Young Jang,^{‡a} Yoon-Joo Ko,^b Yoon Myung,^{*c} and Seung Uk Son^{*a} ^a Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea

E-mail: <u>sson@skku.edu</u>

^b Laboratory of Nuclear Magnetic Resonance, The National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul 08826, Korea

^c Korea Institute of Industrial Technology, Advanced Energy Materials and Components R&D Group, Busan 46744, Korea E-mail: *myungyoon@kitech.re.kr*

Fig. S1 Low magnification SEM images of H-MOP-Ru and HN-Ru/RuO₂.

Fig. S2 Powder XRD patterns of H-MOP-CatP, H-MOP-Cat, and H-MOP-Ru.

Fig. S3 TGA curves of H-MOP-CatP, H-MOP-Cat, and H-MOP-Ru.

Fig. S4 XPS spectra of Ru 3p orbitals, O 1s orbitals, and Pd 3d orbitals of HN-Ru/RuO₂, A-Ru/RuO₂, N-Ru/RuO₂, and N1-Ru/RuO₂.

HN-	Peak	p1	p2	р3	p4
	Position (eV)	461.48	464.08	483.58	485.75
	FWHM	3.57	7.39	3.30	5.93
Ru/RuO ₂	Area (%)	28.2	41.5	12.4	17.9
	r ²	0.996			
	Peak	p1	p2	р3	p4
A-	Position (eV)	461.60	463.57	483.78	485.72
Ru/RuO ₂	FWHM	2.79	5.77	2.56	5.21
	Area (%)	(%) 24.6 44.7 10.5		10.5	20.2
	r ²	0.997			
N- Ru/RuO₂	Peak	p1	p2	р3	p4
	Position (eV)	461.84	463.58	484.06	486.00
	FWHM	2.72	5.97	2.80	5.78
	Area (%)	20.4	45.2	12.3	22.1
	r ²	0.999			
N1- Ru/RuO₂	Peak	p1	p2	р3	p4
	Position (eV)	461.95	463.41	484.23	485.72
	FWHM	3.23	6.04	3.46	6.21
	Area (%)	29.1	37.7	16.1	17.1
	r ²	0.997			

	Peak	p1	p2	р3		
[Position (eV)	528.91	530.02	531.90		
HN-	FWHM	1.11	1.71	3.47		
Ru/RuO ₂	Area (%)	21.7	29.8	48.5		
	r ²	0.997				
	Peak	p1	p2	-		
A- [Position (eV)	528.84	530.32	-		
Ru/RuO ₂	FWHM	1.10	2.82	-		
	Area (%)	36.5 63.5		-		
	r ²	0.993				
	Peak	p1	p2	-		
N- [Position (eV)	528.96	530.44	-		
Ru/RuO ₂	FWHM	1.17	3.06	-		
	Area (%)	42.8 57.2		-		
	r ²		0.991			
	Peak	p1	p2	р3		
	Position (eV)	528.97	530.20	531.86		
	FWHM	1.09	1.67	2.77		
Ru/RuO ₂	Area (%)	16.5	30.1	53.4		
	r ²		0.997			

	Peak	p1	p2	р3	p4	
	Position (eV)	335.24	336.66	340.48	341.94	
	FWHM	2.28	2.55	2.58	2.99	
Ru/RuO ₂	Area (%)	20.2	34.5	17.8	27.5	
	r ²	0.992				
	Peak	p1	p2	р3	p4	
N14	Position (eV)	336.66	337.58	341.80	342.99	
	FWHM	2.23	1.81	2.63	2.30	
	Area (%)	19.2 33.3		18.0	29.5	
	r ²	0.991				

Fig. S6 Nyquist plots of HN-Ru/RuO₂, A-Ru/RuO₂, N-Ru/RuO₂, and N1-Ru/RuO₂ (Electrochemical impedance spectroscopy was conducted at the onset potential of 1.4 V vs RHE within a frequency range of 0.1~100 kHz with a signal amplitude of 10 mV).

Fig. S7 (a) TEM and (b) XPS analysis of HN-Ru/RuO $_2$ retrieved after durability tests.

(a)

	Peak	n1	n2	n3	n4	
Before			<u> </u>			
Delore	Position (eV)	461.48	464.08	483.58	485.75	
	FWHM	3.57	7.39	3.30	5.93	
	Area (%)	28.2	41.5	12.4	17.9	
Ru/RuO ₂	r ²	0.996				
After	Peak	p1	p2	р3	p4	
	Position (eV)	461.66	463.66	483.87	485.84	
HN-	FWHM	2.87	5.57	2.78	5.23	
Ru/RuO ₂	Area (%)	23.7	42.9	12.2	21.1	
	r ²		0.9	97		

-					
Before	Peak	p1	p2	p3	
	Position (eV)	528.91	530.02	531.90	
	FWHM	1.11	1.71	3.47	
	Area (%)	21.7	29.8	48.5	
Ru/RuO ₂	r ²	0.997			
After	Peak	p1	p2	р3	
	Position (eV)	528.62	529.71	531.61	
HN- Ru/RuO ₂	FWHM	1.10	2.18	4.15	
	Area (%)	23.8	39.4	36.7	
	r ²		0.997		

Fig. S8 HER performance of HN-Ru/RuO₂ and N-Ru/RuO₂ (Ar-saturated 1.0 M KOH, working electrode: graphite, reference electrode: Ag/AgCl): (a) HER polarization curves and overpotentials at 10 mA/cm² (scan rate: 10 mV/s) and (b) Tafel plots.

Matarials	$\mathbf{SA}_{\mathrm{BET}}^{a}$	V _{mic} ^b	V _t ^c
Matchais	(m^2/g)	(cm^3/g)	(cm ³ /g)
H-MOP-CatP	339	0.088	0.30
H-MOP-Cat	569	0.14	0.38
H-MOP-Ru	361	0.087	0.24
HN-Ru/RuO ₂	80	-	0.18
A-Ru/RuO ₂	10	-	0.019
N-Ru/RuO ₂	6	-	0.010
N1-Ru/RuO ₂	11	-	0.031

Table S1 Physical parameters of H-MOP-CatP, H-MOP-Cat, H-MOP-Ru, HN-Ru/RuO₂, A-Ru/RuO₂, N-Ru/RuO₂, and N1-Ru/RuO₂.

^a Surface area obtained by a BET plot. ^b Micropore volume obtained by a t-plot. ^c Total pore volume.

Entry	Materials	Strategy	Overpotential	Tafel slope	Electrolyte	Year	Ref
			$@10 \text{ mA/cm}^2 \text{ (mV)}$	(mV/dec)			
1	RuO ₂ /NCNTs	Carbon composites	350	65	0.1 M KOH	2016	1
2	RuO ₂ /C nanoparticles	Carbon composites	-	69	0.1 M KOH	2017	2
3	RuO ₂ /N-C	Carbon composites	280	56	1 M KOH	2018	3
4	Ru/RuO2 nanorods	Nanoengineering	320	86	0.1 M KOH	2019	4
5	RuO ₂ /C	Carbon composites	300	116	0.1 M KOH	2019	5
6	Ru/RuO ₂ /CNT	Carbon composites	209	64	1 M KOH	2020	6
7	RuO ₂ /CeO ₂ nanoparticles	Metal oxide composites	350	74	1 M KOH	2020	7
8	RuO ₂ /F-doped graphene	Carbon composites	239	56	1 M KOH	2020	8
9	Ru/RuO ₂ /N-rGO	Carbon composites	255	89.4	1 M KOH	2020	9
10	CoOx-RuO ₂ /NF	Carbon composites	420	69.6	1 M KOH	2020	10
11	RuO ₂ /Co ₃ O ₄	Metal oxide composites	302	74.37	0.1 M KOH	2020	11
12	RuO ₂ nanoplates	Nanoengineering	400	82.5	1 M KOH	2022	12
13	HN-Ru/RuO ₂	Nanoengineering	295	46	1 M KOH	This work	

Table S2 Electrocatalytic performance of RuO₂-based materials for OER in alkaline electrolytes.

1. K. Xie, W. Xia, J. Masa, F. Yang, P. Weide, W. Schuhmann and M. Muhler, J. Energy Chem. 2016, 25, 282-288.

2. H. -S. Park, E. Seo, J. Yang, Y. Lee, B. -S. Kim and H. -K. Song, Sci. Rep. 2017, 7, 7150.

 C. -Z. Yuan, Y. -F. Jiang, Z. -W. Zhao, S. -J. Zhao, X. Zhou, T. -Y. Cheang and A. -W. Xu, ACS Sustainable Chem. Eng. 2018, 6, 11529-11535.

- 4. R. Jiang, D. T. Tran, J. Li and D. Chu, *Energy Environ. Mater.* 2019, 2, 201-208.
- H. -S. Park, J. Yang, M. K. Cho, Y. Lee, S. Cho, S. -D. Yim, B. -S. Kim, J. H. Jang and H. -K. Song, *Nano Energy* 2019, 55, 49-58.
- 6. M. Zhang, J. Chen, H. Li, P. Cai, Y. Li and Z. Wen, Nano Energy 2019, 61, 576-583.
- 7. S. M. Galani, A. Mondal, D. N. Srivastava and A. B. Panda, Int. J. Hydrog. Energy 2020, 45, 18635-18644.
- 8. Z. Fan, F. Liao, H. Shi, Y. Liu, M. Shao and Z. Kang, Inorg. Chem. Front. 2020, 7, 2188-2194.
- 9. X. Gao, J. Chen, X. Sun, B. Wu, B. Li, Z. Ning, J. Li and N. Wang, ACS Appl. Nano Mater. 2020, 3, 12269-12277.
- 10. T. Yu, G. Xu, G. Qian, J. Chen, H. Zhang, L. Luo and S. Yin, ACS Sustainable Chem. Eng. 2020, 8, 17520-17526.
- B. -Y. Guo, X. -Y. Zhang, X. Ma, T. -S. Chen, Y. Chen, M. -L. Wen, J. -F. Qin, J. Nan, Y. -M. Chai and B. Dong, *Int. J. Hydrog. Energy* 2020, 45, 9575-9582.
- 12. S. Sarkar, D. Mukherjee, R. Harini and G. Nagaraju, J. Mater. Sci. 2022, 57, 7680-7693.