## Supplementary data

Overcoming Copper-Induced Conversion Reactions in Nickel Disulphide Anodes for Sodium-Ion Batteries

Milan K. Sadan <sup>a,b\*</sup>, Taehong Kim <sup>b</sup>, Anupriya K. Haridas <sup>c</sup>, Hooam Yu <sup>b</sup>, Denis Cumming <sup>d</sup>, Jou-Hyeon Ahn <sup>b</sup>, and Hyo-Jun Ahn <sup>b\*</sup>

<sup>*a,b*</sup> Dyson School of Design Engineering, Imperial College London, Imperial College Rd, South Kensington, London SW7 2DB, United Kingdom.

<sup>b</sup>Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea.

<sup>c</sup>Energy Innovation Centre, Warwick Manufacturing Group, University of Warwick, Coventry, CV4 7AL, United Kingdom.

<sup>d</sup>Department of Chemical and Biological Engineering, Mappin Street, University of Sheffield, Sheffield S1 3JD, United Kingdom.

\*Corresponding authors.

Prof. Hyo-Jun Ahn

E-mail: <u>ahj@gnu.ac.kr</u>

Milan K. Sadan

E-mail: m.kooplikkattil-sadan@imperial.ac.uk



Figure S1. FESEM image of precursor: (a) nickel nanoparticle, (b) sulphur particle, and (c) nickel-sulphur mixture after ball milling.



Figure S2. EDS mapping in STEM mode of nickel disulphide respectively.



Figure S3. GITT profile of  $NiS_2$  on different current collector: a) C/Al foil, b) nickel foil, c) SS foil, d) Ti foil, e) Al foil and f) CNT coated Al foil in ether electrolyte.



Figure S4. EDS mapping of the electrode after 50 cycles in ether electrolyte.



Figure S5. Corresponding voltage profile of  $NiS_2$  electrode on C/Al current collector in ether electrolyte while long-term cycling at 50 Ag<sup>-1</sup>.

Table S1. Comparison of the previous report of nickel disulphide  $(NiS_2)$  as anode material for sodium-ion batteries.

| Electrode                                                         | Electrolyte                                     | Carbon                              | Current<br>collecto<br>r   | Voltage<br>window | First<br>reversible<br>capacity<br>(current<br>density) | Cycle<br>performa<br>nce<br>mAh/g<br>(cycle<br>number,<br>current<br>density) | Rate<br>performa<br>nce | Ref |
|-------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|----------------------------|-------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------|-----|
| NiS <sub>2</sub> -GNS                                             | 1 M NaClO₄<br>in EC:DMC<br>+5 % FEC             | 50 %                                | stainless<br>steel<br>mesh | -                 | 407 (100<br>mA/g)                                       | 313(200,1<br>00 mA/g)                                                         | 168 (1614<br>mA/g)      | S1  |
| NiS <sub>2</sub> @CoS <sub>2</sub><br>hetero-<br>nanocrystal<br>s | 1.25 M<br>NaPF <sub>6</sub> in<br>EMC           | 51 %                                | copper<br>foil             | 0.01–3.0<br>V     | _                                                       | 600(250,1<br>000<br>mA/g)                                                     | 560 @ 5<br>A/g)         | S2  |
| Ni-MOFs-<br>derived<br>NiS <sub>2</sub>                           | 1 M NaClO <sub>4</sub><br>in EC:DEC+<br>1 % FEC | 31.2 %                              | copper<br>foil             | 0.01–3.0<br>V     | 441<br>(mA/g)                                           | 186.9<br>(100,<br>500mA/g)                                                    | 209.8 @<br>0.5 A/g)     | \$3 |
| Mesoporou<br>s NiS <sub>2</sub><br>Nanospher<br>es                | 1 M NaClO <sub>4</sub><br>in<br>DEGDME          | Present<br>but not<br>mention<br>ed | Titaniu<br>m foil          | 0.4-2.9 V         | 692 (100<br>mA/g)                                       | 319<br>(1000,<br>500<br>mA/g)                                                 | 253 @<br>5A/g           | S4  |
| Yolk–Shell<br>NiS <sub>2</sub><br>Nanoparticl<br>e                | 1 M NaClO <sub>4</sub><br>in EC:PC+ 2<br>% FEC  | 61 %                                | Free<br>standing           | 0.01–3 V          | 679<br>(0.1C)                                           | 275<br>(5000,<br>5C)                                                          | 245 @<br>10C            | S5  |
| Hollow NiS <sub>2</sub><br>spheres                                | 1.0 M<br>NaPF <sub>6</sub> in<br>DEGDME         | 17 %                                | Copper<br>foil             | 0.05-3 V          | 746(100<br>mA/g)                                        | 530<br>(300,1A/g<br>)                                                         | 527.8<br>@2A/g          | S6  |
| NiS <sub>2</sub> /nitrog<br>en doped<br>carbon<br>hybrid          | 1 M NaClO <sub>4</sub><br>in EC:PC+ 5<br>% FEC  | 26 %                                | Copper<br>foil             | 0.005-3 V         | 559.1<br>(100<br>mA/g)                                  | 356 (300,<br>500<br>mA/g)                                                     | 294 @<br>3A/g           | S7  |
| NiS <sub>2</sub> in N-<br>doped<br>carbon                         | 1 M NaClO <sub>4</sub><br>in EC:PC+ 5<br>% FEC  | 50.6 %                              | Copper<br>foil             | 0.01-3 V          | 669(100<br>mA/g)                                        | 580(100,<br>100mA/g)                                                          | 448 @1.6<br>A/g         | S8  |
| NiS₂NP/p-<br>CNF                                                  | 1 M NaClO <sub>4</sub><br>in EC:PC+ 5<br>% FEC  | 54 %                                | Copper<br>foil             | 0.01-3 V          | 628 (100<br>mA/g)                                       | 200(2000,<br>2A/g)                                                            | 300@2A/<br>g            | S9  |

| NiS <sub>2</sub><br>nanosheets<br>on carbon<br>micro tube            | 1M NaClO <sub>4</sub><br>in EC/DMC<br>+ 5%FEC        | Present<br>but not<br>mention<br>ed | Copper<br>foil       | 0.01–3 V        | 926 (100<br>mA/g)       | 640<br>(5000,<br>1A/g)     | 431 @<br>8A/g    | S10 |
|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------------|----------------------|-----------------|-------------------------|----------------------------|------------------|-----|
| SnS <sub>2</sub> /NiS <sub>2</sub><br>hetero-<br>nanosheet<br>arrays | $1 \text{ M NaPF}_6$<br>in PC + 5 %<br>FEC           | 45 %                                | Free<br>standing     | 0.005–<br>3.0 V | 857 (200<br>mA/g)       | 588 (100,<br>0.5 A/g)      | 360 @<br>5A/g    | S11 |
| NiS <sub>2</sub>                                                     | 1M<br>NaCF <sub>3</sub> SO <sub>3</sub><br>in DEGDME | Present<br>but not<br>mention<br>ed | Copper<br>foil       | 0.005–<br>3.0 V | ~700<br>(1000<br>mA/g)  | 480(200,<br>1 A/g)         | -                | S12 |
| NiS <sub>2</sub> /RGO                                                | 1M<br>NaCF <sub>3</sub> SO <sub>3</sub><br>in DEGDME | 23.4 %                              | Copper<br>foil       | 0.01-3.0<br>V   | 785.79<br>(100<br>mA/g) | 267 (50,<br>0.1 A/g)       | 300 @ 5<br>A/g   | S13 |
| NiS <sub>2</sub> /Graph<br>ene                                       | 1 M NaClO <sub>4</sub><br>in EC/DEC +<br>5%FEC       | 25 %                                | Not<br>mention<br>ed | 0.05-3.0<br>V   | 1213 (100<br>mA/g)      | 900.7<br>(100, 0.1<br>A/g) | 580.6 @ 5<br>A/g | S14 |
| NiS <sub>2</sub><br>nanosheet<br>arrays                              | 1 M NaClO <sub>4</sub><br>in PC +<br>5%FEC           | Present<br>but not<br>mention<br>ed | SS                   | 0.01- 3.0<br>V  | 783.16<br>(0.1C)        | 469.9<br>(100,<br>0.1C)    | 492 @5C          | S15 |
| G/NiS <sub>2</sub> -<br>MoS <sub>2</sub>                             | 1 M NaClO <sub>4</sub><br>in EC/DEC                  | Present<br>but not<br>mention<br>ed | Cu foil              | 0.01- 3.0<br>V  | 509.6<br>(500<br>mA/g)  | 337(500,<br>0.5A/g)        | 424.5 @<br>2A/g  | S16 |
| NiS <sub>2</sub><br>nanospher<br>es                                  | 1 M NaClO <sub>4</sub><br>in DME                     | 21.49%                              | Cu foil              | 0.01- 3.0<br>V  | 591 (200<br>mA/g)       | 436.3<br>(800,<br>1A/g     | 411 @<br>2A/g    | S17 |
| This Report                                                          | 1M NaPF <sub>6</sub><br>in DME                       | -                                   | Cu foil              | 0.01- 3.0<br>V  | 812 (1000<br>mA/g)      | 814 (100,<br>1A/g)         | 132<br>@100 A/g  |     |
|                                                                      | 1 M NaPF <sub>6</sub><br>in EC/DEC                   |                                     | Cu foil              | 0.01- 3.0<br>V  | 629 (1000<br>mA/g)      | 25 (100,<br>1A/g)          | -                |     |
|                                                                      | 1M NaPF <sub>6</sub><br>in DME                       |                                     | C/Al foil            | 0.01- 3.0<br>V  | 768 (1000<br>mA/g)      | 241(5000<br>0, 50 A/g)     | 129 @<br>100 A/g |     |

## References

S1. Wang, T.; Hu, P.; Zhang, C.; Du, H.; Zhang, Z.; Wang, X.; Chen, S.; Xiong, J.; Cui, G., *ACS Appl Mater Interfaces* 2016, *8* (12), 7811-7. DOI: 10.1021/acsami.6b00179.

S2. Lin, Y.; Qiu, Z.; Li, D.; Ullah, S.; Hai, Y.; Xin, H.; Liao, W.; Yang, B.; Fan, H.; Xu, J.; Zhu, C., *Energy Storage Mater.* 2018, *11*, 67-74. DOI: 10.1016/j.ensm.2017.06.001.

S3. Zhu, K. J.; Liu, G.; Wang, Y. J.; Liu, J.; Li, S. T.; Yang, L. Y.; Liu, S. L.; Wang, H.; Xie, T., *Mater. Lett.* 2017, *197*, 180-183. DOI: 10.1016/j.matlet.2017.03.087.

S4. Sun, R.; Liu, S.; Wei, Q.; Sheng, J.; Zhu, S.; An, Q.; Mai, L., *Small* 2017, *13* (39). DOI: 10.1002/smll.201701744.

S5. Chen, Q.; Sun, S.; Zhai, T.; Yang, M.; Zhao, X.; Xia, H., *Adv. Energy Mater.* 2018, *8* (19). DOI:10.1002/aenm.201800054.

S6. Bi, R.; Zeng, C.; Huang, H.; Wang, X.; Zhang, L., *J. Mater. Chem. A* 2018, *6* (29), 14077-14082. DOI: 10.1039/c8ta05554h.

S7. Li, J.; Li, J.; Yan, D.; Hou, S.; Xu, X.; Lu, T.; Yao, Y.; Mai, W.; Pan, L., *J. Mater. Chem. A* 2018, *6* (15), 6595-6605. DOI: 10.1039/c8ta00557e.

S8. Zhao, G.; Zhang, Y.; Yang, L.; Jiang, Y.; Zhang, Y.; Hong, W.; Tian, Y.; Zhao, H.; Hu, J.;
Zhou, L.; Hou, H.; Ji, X.; Mai, L., *Adv. Funct. Mater.* 2018, *28* (41). DOI :
S10.1002/adfm.201803690.

S9. Zhao, W.; Ci, S.; Hu, X.; Chen, J.; Wen, Z., *Nanoscale* 2019, *11* (11), 4688-4695. DOI: 10.1039/c9nr00160c.

S10. Zhao, J.; Wang, G.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D.; Wang, H.-E., *J. Power Sources* 2020, *451*. DOI: 10.1016/j.jpowsour.2020.227737.

S11. Guan, S.; Wang, T.; Fu, X.; Fan, L.-Z.; Peng, Z., *Appl. Surf. Sci.* 2020, *508*. DOI: 10.1016/j.apsusc.2019.145241.

S12. Li, Q.; Wei, Q.; An, Q.; Huang, L.; Luo, W.; Ren, X.; Owusu, K. A.; Dong, F.; Li, L.; Zhou,
P.; Mai, L.; Zhang, Q.; Amine, K.; Lu, J., *Energy Storage Mater.* 2019, *16*, 625-631. DOI: 10.1016/j.ensm.2018.07.002.

S13. Zheng, H.; Chen, X.; Li, L.; Feng, C.; Wang, S., *Mater. Res. Bull.* 2021, *142*. DOI: 10.1016/j.materresbull.2021.111430.

S14. Wang, L.; Han, Z.; Zhao, Q.; Yao, X.; Zhu, Y.; Ma, X.; Wu, S.; Cao, C., *J. Mater. Chem. A* 2020, *8* (17), 8612-8619. DOI: 10.1039/d0ta02568b.

S15. Fan, M.-P.; Chen, Y.-C.; Chen, Y.-M.; Huang, Z.-X.; Wu, W.-L.; Wang, P.; Ke, X.; Sun, S.-H.; Shi, Z.-C., *Rare Metals* 2022, *41* (4), 1294-1303. DOI: 10.1007/s12598-021-01890-2.

S16. Huang, J.; Yao, Y.; Huang, M.; Zhang, Y.; Xie, Y.; Li, M.; Yang, L.; Wei, X.; Li, Z., *Small* 2022, *18* (18), e2200782. DOI: 10.1002/smll.202200782.

S17. Zhang, W. X.; Zhang, J. H.; Guo, J. Q.; He, C.; Wen, J. R., *J. Alloys Compd.* 2023, *937*. DOI: 10.1016/j.jallcom.2022.168379.