Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2023

SUPPLIMENTARY MATERIAL

Table S1: The quality target product profile (QTPPs) elements of the nano-appended formulation (MPPs) along with CQAs and their related justification

QTPP elements	Target	CQA	Justification
Clinical purpose	Reach the ovarian tissue (Both hydrophilic APIs (MF and	-	Both of these drugs are reported to come under
(Therapeutic effect)	MI, the potential target to normalize the endocrine		the first-line treatment for PCOS
	hormones and treat the PCOS		
Proposed pharmaceutical	Surface-modified nanoparticles (MPPs)-gel	-	To improve therapeutic efficacy and patient
formulation			compliance
Drug delivery system	Intra-vaginal drug delivery system	-	Deeply penetrate through the vaginal tissue to
(route of administration)			reach the systemic circulation through the
			uterovaginal pathways
Vaginal tolerability	No irritation	-	Dermal effect
(irritation)	No any allergic effect		
	No inflammation		
Targeted area	Ovaries	-	Effect on therapeutic efficacy and help to
			ameliorate PCOS
Dosage form strength	Good	-	Influence the frequency of dosing and dose
Particle diameter	≤ 200 nm (small)	Yes	Effect on MPPs penetrability, targeted delivery,
			uniform distribution, and drug release
Polydispersity index	≤ 0.3 (uniform)	Yes	Effect on MPPs penetrability, targeted delivery,
			uniform distribution, and drug release
ζ potential	More neutral than -10mV	Yes	Effect on penetrability into the mucus layer,
			uniform distribution, and retention time
Biodegradable polymer	Optimized	Yes	Facilitate particle size/shape, PDI, drug
concentration			entrapment, and ζ potential
Surfactant concentration	Optimized	Yes	Effect on formulation development, particle
			size, and shape.
Carbomer concentration	Optimum	Yes	Effect on texture and viscosity of MPPs-gel
			formulation
Glycerol	Optimum	Yes	Moisturizing effect on vaginal tissue
Lactic acid	Vaginal pH	Yes	maintain suitable mucosal environment
pH	Vaginal pH	Yes	Effect on vaginal mucus membrane irritation
			and inflammation of the tissue
Temperature	50-60°C	Yes	Impact on nano-formulation development

Drug	entrapment	High	Yes	Facilitate the dosing quantity and drug delivery
efficiency				system
Drug release		Sustained	Yes	Facilitate the dosing quantity and drug delivery
				system
Needle type		Small	Yes	Effect on particle size and PDI
Injection rate		Optimized	Yes	Effect on particle size and PDI
Stirring speed		High	Yes	Effect on particle size, PDI, and stability
Stirring time		Optimized	Yes	Effect on particle size, PDI, and stability

CQAs	Clinical objective	Route of administration	Dosage form	Method	Vaginal tissue irritation	Retention time	Stability	Dosage form applicator
PS	Medium	Medium	High	High	Medium	Medium	High	Low
PDI	Low	Low	High	High	Low	Low	High	Low
ZP	Medium	High	High	Medium	Low	Medium	High	Low
EE	Low	Medium	High	High	Low	High	High	Low
ТА	Low	Low	High	Low	Medium	Medium	Medium	High
RS	Low	Low	Medium	Low	Medium	Medium	Medium	High
рН	Medium	Medium	Medium	Low	High	Medium	Medium	Low
Release	High	High	High	Medium	Low	High	High	Medium

Figure S1: The RAM facilitated the QAs Vs QTPPs relationship

QAs					MA	5							PI	Ps		
	PLGA grade	PLGA conc.	Organic solvent	Drug conc.	PF 127 conc.	Carbomer grade	Carbomer conc.	TEA	Glycerine	Lactic acid	Injection rate	Injection speed	Temperature of MPPs	Needle size	Stirring time of mpps	Stirring time of carbomer solution
PS	Low	High	Mediu m	Medi um	High	Low	Low	Low	Low	Low	High	High	High	Hig h	Mediu m	Low
PDI	Low	High	Mediu m	high	High	Low	Low	Low	Low	Low	High	High	High	Hig h	Mediu m	Low
ZP	Mediu m	Mediu m	Low	High	High	Medi um	Medi um	Medi um	Medi um	Medi um	Low	Low	Low	Low	Low	Low
EE	Mediu m	High	Low	High	High	Low	Low	Low	Low	Low	Mediu m	Low	Medi um	Low	Mediu m	Low
ТА	Low	Low	Low	Low	Low	Medi um	High	Medi um	Medi um	Low	Low	Low	Low	Low	Low	Medium
RS	Mediu m	Mediu m	Low	Medi um	Medi um	Medi um	High	Medi um	Medi um	Medi um	Mediu m	Low	Low	Low	Low	Medium
рН	Low	Mediu m	Low	Low	Medi um	High	High	Medi um	Medi um	High	Low	Low	Low	Low	Low	Low
Relea	High	Mediu m	Low	Medi um	Medi um	Medi um	Medi um	Medi um	Low	Medi um	Mediu m	Mediu m	Medi um	Med ium	Mediu m	Medium
se																

Figure S2: The RAM facilitated the QAs Vs MAs/PPs relationship

Table S2: FMEA of different risk factors involved in development of formulation which also include their related failure mode, potential cause and their control. The severity score (S), probability of occurrence (O) and detectability (D) scores of MAs and PPs in relation with their failure mode were revealed. The RPN number of risk variable were calculated and classified accordingly into high, medium and low risk.

Risk	Failure	Failure effect	5	Potential cause	0	control	D	RPN	Risk
variabl	mode								
e									
				Q.	As				
Particl e size	Large particle size (>200nm)	Failure to deep mucosal penetration, reach the targeted area and dose uniformity issue	9	ChangeinconcentrationofpolymerandsurfactantChangein	8	The optimum and precise quantity of polymer and surfactant will significantly affect the particle along with the control/constant	9	512	High
				temperature, stirring speed and time		temperature, stirring speed and time			
PDI	>0.3	Alter in dose 8 uniformity, uniform distribution of drug in the particles, and drug loading capacity	3	Major factors are Change in concentration of polymer and surfactant, change in temperature, stirring speed and tme	8	The optimum and precise quantity of polymer and surfactant will be significantly affecting the particle along with the control/constant temperature, stirring speed and time.	8	512	High
Zeta potenti al	Highly negative or highly positive surface charge	failure to cross the 7 vaginal mucosal membrane/barrier and not capable to reach on the targeted area Failure to maintain MIC level in a targeted area Stability issue of formulation	7	Ionic property of selected materials (especially those material which are present on the outer shell of particles) are key factor to affect the zeta potential	7	The selected coating material and surfactant are potent to neutralize nanoparticle surface charge.	6	294	Medium

Drug	A low	Alter in dose 8	Formulation	8	Method should be developed	7	448	High			
entrap	percentag	uniformity, uniform	development method,		based on drug solubility						
ment	e of drug	distribution of a	surfactant		profile and log P value						
efficien	entrapmen	drug in the particles,	concentration and		The optimum amount of						
cy	t	and minimum	temperature are key		surfactant affects the drug						
	efficiency	effective	factor		entrapment efficiency						
		concentration (MIC)									
Drug	Low % of	Alter in dose 6	Formulation	7	Method should be developed	7	294	Medium			
loading	drug	uniformity, uniform	development method,		on the basis of drug solubility						
	loading	distribution of a	surfactant		profile and log P value						
		drug in the particles,	concentration and		Optimum amount of						
		and minimum	temperature are key		surfactant affect the drug						
		effective	factor		entrapment efficiency						
		concentration (MIC)			1 2						
		Negative impact on									
		dose capacity									
Drug	Low	Formulation failure 6	Drug entrapment	6	Maximum limit of drug	7	294	Medium			
release	limits of	as its effects on	efficiency and drug		entrapment efficiency,						
	drug	pharmacological	loading capacity		loading capacity and						
	entrapmen	effect			sustained release						
	t										
	efficiency										
	/pharmaco										
	logical										
	action										
Conten	Non-	Negative impact on 5	High PDI, and	5	Optimum PDI, temperature	4	100	Low			
t	uniform	dose capacity and	inadequate		and stirring speed and time						
unifor	drug	drug release	temperature range								
mity	_										
	MAs										

Organi c solvent concen tration	Inadequat e quantity	Impacton3formulationdevelopment andemulsification	Inadequate quantity 2 affects the formulation development	2	Optimum quantity helps in proper emulsion formation during the processing of formulation development	3	18	Low
Polyme r concen tration	Inadequat e particle size, PDI, drug loading capacity	Drug release, drug 9 loading capacity, entrapment efficiency, particles size, and PDI are the majorly affected factors	Polymer concentration 8 majorly contributed to the formulation development that affects the drug release, drug loading capacity, entrapment efficiency, particles size, and PDI	8	an accurate and precise quantity of polymeric concentration possessed optimum results	9	684	High
PF127 concen tration	Inadequat e particle size, PDI, drug loading capacity and stability	Drug loading 8 capacity, entrapment efficiency, stability, particles size, and PDI are affected by surfactant concentration	Highsurfactantconcentrationgavebetterresultsofparticlesize/PDIbutlowdrugentrapmentefficiency/loadingcapacitywhileexcessivelowconcentrationfacilitateslargeparticlesizeandhighPDI	8	Optimum concentration facilitates required particle size/PDI and a high % of drug entrapment efficiency/loading capacity. It also provides stability to the formulation	8	512	High

Drug concen tration	Low drug loading capacity	High concentration 8 might affect on the quality of particle size and low entrapment efficiency. Excessive low concentration fail to meet the therapeutic effect of drug	High concentration might affect the quality of particle size and low entrapment efficiency	8	The optimum concentration provides better therapeutic effect and improved the quality of the product	8	512	High
Formu lation metho d	The solvent evaporatio n method failed to load hydrophili c drugs	Less % of drug 5 entrapment efficiency and loading capacity	An alternative method might improve the entrapment efficiency and loading capacity	7	The double emulsion method provided improved drug loading capacity and entrapment efficiency	7	245	Medium
Carom er concen tration	Either very high viscosity or very low	Solidified/ liquified 8 gel might effect on texture and viscosity of gel while less viscose gel might be expelled from the vaginal cavity thus effect on the therapeutic dose. It also effects on patient compliance.	A change in concentration could alter the texture and viscosity of the gel	6	Optimum concentration could improve the texture and viscosity of gel	6	288	Medium

Glycer ol	High concentrat ion	Might affect on physical properties of gel	6	High lubricating effect on vaginal cavity	5	Optimum concentration could moisturize the vaginal tissue	6	180	Medium
Lactic acid	High concentrat ion	Alter pH of vaginal cavity	6	High concentration might cause burning sensation/irritation	5	Optimum comcentration maintain vaginal pH.	6	180	Medium
рН	Outside the limit of the simulated vaginal pH range and skin irritation	Skin irritation and change in release profile	6	Change in concentration of required component	6	Optimum pH needs to avoid irritation, inflammation, and discomfort on the vaginal area	5	180	Medium
Log P	Reduce permeabil ity	Change in permeability	2	Physicochemical properties of API	3	-	3	18	Low
				PPs					
Tempe rature	Inadequat e temperatu re range	Inadequate formulation development, change in particle size and PDI affect drug entrapment efficiency, loading capacity and uniformity	7	At low temperatures, failure of emulsification in the processing of nanoparticles, enhanced particle size, and PDI	7	Optimum constant temperature	6	294	Medium

Needle type Injecti on rate	High range of particles size High range of particles size	Alteration in particle 2 size and PDI of the formulation Enhance particle 4 size and PDI of the formulation	 Change in needle size Kon-uniform plunger pressure leads to change the injection rate 	3	Proper screening of needle size Constant plunger pressure and optimum injection rate	2	12 80	Low
Stirrin g speed	High range of particles size and increase in PDI	An extended range 6 of particles size and high PDI are responsible for non- uniform dose, failure to cross the vaginal mucosal membrane/barrier, also effect on drug entrapment efficiency	6 Slow and irregular stirring speed	7	ligh and constant stirring speed	6	252	Medium
Stirrin g time	Instability	7	7	7		6	294	
homog eneity	Non- uniform drug distributio n and dose	3	3	2		3	18	

	MAs		PPs									
Trials	PLGA polymer	PF127(%)	Stirring speed	S. time	Temperature (°C)	Inj. Rate (ml/min)	PS	PDI				
F1	10	0.4	1500	6h	60	1	125.6	0.156				
F2	20	0.4	1500	6h	60	1	167.1	0.178				
F3	30	0.4	1500	6h	60	1	197.25	0.169				
F4	40	0.4	1500	6	60	1	251.41	0.245				
F5	30	0.1	1500	6	60	1	210.12	0.412				
F6	30	0.5	1500	6	60	1	195.15	0.157				
F7	30	1.0	1500	6	60	1	139.87	0.0782				
F8	30	0.4	500	6	60	1	248.69	0.314				
F9	30	0.4	1000	6	60	1	221.09	0.287				
F10	30	0.4	1500	6	60	1	198.47	0.192				
F11	30	0.4	1500	3	60	1	215.89	0.478				
F12	30	0.4	1500	5	60	1	196.78	0.287				
F13	30	0.4	1500	7	60	1	198.47	0.194				
F14	30	0.4	1500	6	30	1	578	1.083				
F15	30	0.4	1500	6	40	1	201.98	0.277				
F16	30	0.4	1500	6	60	1	199.44	0.178				
F17	30	0.4	1500	6	60	1	184.28	0.217				

 Table S3 (Supplementary material): Total 19 runs of formulation trials with the response of CQAs

F18	30	0.4	1500	6	60	2	238.86	0.374
F19	30	0.4	1500	6	60	3	289.78	0.318

 Table S4 (Supplementary material):
 Optimization range of some PPs

S.no.	Process parameters (PPs)	Optimized value
1.	Temperature (°C)	60°C
2.	Stirring speed (rpm)	1500rpm
3.	Stirring time (hrs)	6-8hrs
4.	Injection rate (ml/min)	1ml/min

Table S5 (Supplementary material): Various factors and their level of the different ranges including axial points were applied in the DoE.

Independent	ent Level							
variable,	-6.82	-1	0	+1	6.82			
CMAs								
X1 = PLGA	13.18	20.0	30.0	40.0	46.82			
conc (mg)								
$\mathbf{X2} = \mathbf{PF127}$	0.0636	0.20	0.30	0.40	0.7364			
conc(%)								
X3 = Drug	33.18	40	50.0	60.0	66.82			
conc (mg)								
D1 or D2								

Figure S3: Gontour plot of optimization of formulation represented the effect of independent variables on dependent variables. Here, graph a, c, e, g, i, k, m, o and q represented the contour plots of MTF-MPPs while graph b, d, f, h, j, l, n, p, and r represented the contour plots of MI-MPPs formulation

CQAs	Model	Summary of fit				
		P-value	R ²	Adjusted R ²	Predicted R ²	Adequate precision
PS of MTF or D1(Y1)	Quadratic	0.0001	0.9789	0.9599	0.9162	25.5939
PS of MI or D2(Y2)	Quadratic	0.0020	0.9652	0.9339	0.8644	20.8877
PDI of D1(Y3)	Quadratic	< 0.0001	0.9983	0.9968	0.9897	83.4389
PDI of D2(Y4)	Quadratic	< 0.0001	0.9952	0.9909	0.9831	53.3576
EE of D1(Y5)	Quadratic	< 0.0001	0.9836	0.9688	0.8966	28.3225
EE of D2(Y6)	Quadratic	< 0.0001	0.9927	0.9862	0.9642	41.1738

Table S6: Summery of fit on all the responses of respective drug having regression analysis between adjusted value vs predicted value

Figure S4: represents the kinetic model of the in-vitro release study: Sample A (MTF-Gel) follow first-order kinetic; sample B(MTF-MPPs) follows zero-order kinetic and sample C (MTF-MPPs-Gel): follows zero-order kinetic

Figure S5: represents the kinetic model of the in-vitro release study: Sample A (MI-Gel) follows first-order kinetic; sample B(MI-MPPS) follows zero-order kinetic and sample C (MI-MPPs-Gel): follows zero-order kinetic