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Buckling modes of a free film–continuum model

As described in the main text (Eq. (8)), the shape of the film under a compressive force satisfies 

the following equation 
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The non-trivial solution for bending due to buckling satisfies the following solution

𝑢(𝑥) = 𝐴𝑠𝑖𝑛(2𝜋𝑥
𝜆 ) + 𝐵𝑐𝑜𝑠(2𝜋𝑥

𝜆 ) + 𝐶𝑥 + 𝐷

where  and  are constants determined from the boundary conditions and  is the wavelength 𝐴,𝐵,𝐶 𝐷 𝜆

of the buckled mode, such that 
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= (2𝜋
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Considering a periodic simulation cell of size , the buckled shape satisfies the following boundary 𝐿

conditions:
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Since we can omit rotation and translation of the whole film in our MD simulation, . Thus, 𝐶 = 𝐷 = 0

it is sufficient to consider the boundary conditions for the deflection and the rotation angle (first 

derivative). Applying the boundary condition of the solution, we obtain the following equations 

for the boundary conditions
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𝜆 ) 𝑐𝑜𝑠(2𝜋𝐿
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There is a non-unique solution when

‒ sin2 (2𝜋𝐿
𝜆 ) ‒ (𝑐𝑜𝑠(2𝜋𝐿

𝜆 ) ‒ 1)2 = 0,

which leads to a discrete set of solutions for the wave lengths, , that corresponds to the n-th 𝜆𝑛

buckling mode

2𝜋𝐿
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= 2𝜋𝑛

For a free-standing sheet, the buckling force satisfies
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Alternatively, the bucking force in the n-th mode of a periodic sheet of length  is 𝐿

𝐹𝑛 = 𝐸𝑓𝐼( 4𝜋2𝑛2

(1 ‒ 𝜈2)𝐿2)

Given that  for a sheet, then
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and the compressive stress for buckling is 

𝜎𝑛 =
𝐹𝑛

𝑤ℎ
=

𝐸𝑓ℎ2

12 ( 4𝜋2

(1 ‒ 𝜈2)𝜆2
𝑛
) =

𝐸𝑓ℎ2

3 ( 𝜋2𝑛2

(1 ‒ 𝜈2)𝐿2)
Alternatively, we can find the compressive buckling strain, such that
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The compressive buckling strain as a function of  is shown in Fig. S1. 𝑛 𝐿

Fig. S1.  The buckling strain of a double layer WS2 film in the MD simulations, for different LJ 

energies of the intralayer interatomic potential. The lines are a 2nd order polynomial fits, whereas 



the linear term is used to estimate the slope at large lengths of films (small ), from which the 𝑛 𝐿

effective thickness is estimated.  

Fig. S2. Stress-strain response of a 540  long double layer WS2 film (with periodic boundary Å

conditions). To reduce the effect of the fluctuations, moving average is applied to the post-buckling 

response (red dots). The stress drop as a result of the faceting appears around a strain of 1.5%. The 

buckled shapes are shown as insets. 



Young’s modulus of PDMS

We stretched a sample of PDMS, see its stress-strain curve in Fig. S3. The Young’s modulus of 

the PDMS was extracted as .𝐸𝑠 = 845 𝑘𝑃𝑎

Fig. S3. Measured stress-strain curve of PDMS.



Raman measurement 

An example of Raman measurement with no split peak is shown in Fig. S4.𝐸2𝑔 

Fig. S4. An example of Raman spectrum with no split peak.𝐸2𝑔 


