Supporting information for

Paper/GO/e-Au Flexible SERS Sensors for In-situ Detection of Tricyclazole in Orange Juice and on Cucumber Skin at Sub-ppb

Level: Machine Learning-Assisted Data Analysis

Ha Anh Nguyen^{a,*,1}, Quan Doan Mai^{a,1}, Dao Thi Nguyet Nga^a, Minh Khanh Pham^a,

Quoc Khanh Nguyen^b, Trong Hiep Do^b, Van Thien Luong^b,

Vu Dinh Lam^c, Anh-Tuan Le^{a,d,**}

^aPhenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam

^bFaculty of Computer Science, Phenikaa University, Hanoi 12116, Vietnam

^cInstitute of Materials Science (IMS) and Graduate University of Science and Technology

(GUST), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000,

Vietnam

^dFaculty of Materials Science and Engineering (MSE), Phenikaa University, Hanoi 12116,

Vietnam

Corresponding authors:

*anh.nguyenha@phenikaa-uni.edu.vn (H.A.Nguyen)

**<u>tuan.leanh@phenikaa-uni.edu.vn</u> (A.T.Le)

¹ N.H. Anh and M.Q. Doan contributed equally to this work

Calculation of limit of detection (LOD) and limit of quantification (LOQ)

The standard curve of linear detecting range was given as:

$$Y = A + B \times Log(X) \tag{1}$$

where A and B are intercept and slope of regression equation obtained through the plot of the logarithmic SERS intensity (Y) – logarithmic concentration (X).

The LOD is calculated using the following equation [1]:

$$LOD = 10^{[(Y_{blank} + 3SD)/Y_{blank} - A]/B}$$
(2)

The LOQ is calculated as

$$LOQ = 10^{[(Y_{blank} + 10SD)/Y_{blank} - A]/B}$$
(3)

where Y_{blank} and SD are the SERS signal and the standard deviation of blank sample, respectively.

SD is calculated via the well-known formula:

$$SD = \sqrt{\frac{1}{n-1} \times \sum_{i}^{n} (x_i - x_{average})^2}$$
(4)

where x_i if the "i" sample of the series of measurements, $x_{average}$ is the average value of SERS signal obtained from the blank sample repeated n times.

Calculation of relative standard deviation (RSD)

The RSD value of repeatability and reproducibility is calculated via the well-known formula:

$$RSD = \frac{SD \times 100}{x_{average}}$$
(5)

where SD is the standard deviation that calculates using equation 4 and $x_{average}$ is the average value of SERS signal obtained from each measurement.

Figure S1. (a) SEM images and particle size distribution histograms of e-AuNPs (b) Absorbance spectra of e-AuNPs (Images adapted from ref [2])

Figure S2. SERS spectra of TCZ on paper/GO/e-Au, paper/e-Au and paper.

Figure S3. SERS intensity at the peak of 592 cm⁻¹ of TCZ (10⁻⁵ M) on Paper/GO/e-Au substrate with different GO contents.

Figure S4. Lewis dot diagram of dative bond between Au atom in paper/GO/e-Au and S atom in TCZ.

Compound	Characteristic	Assignment
	peak (cm ⁻¹)	
4-nitrophenol	491	C=O out-plane bending [3]
	1248	O–C stretching [3]
	1322	NO ₂ symmetric stretching [3]
Carbaryl	424	C–C bending [4]
	485	C–C bending [4]
	1230	Ring vibration [4]
	1443	C–C wagging [4]
Chloramphenicol	1163	N–H in plane bending [5]
	1347	N–O ₂ symmetric stretching [5]
	1605	Ring stretching [5]
Congo red	1159	C–N stretching [6]

Table S1. Characteristic peaks of ten organic molecules for feeding the machine learning model

	1368	(C=C) naphthyl stretching [6]
	1589	C–C aromatic ring stretching [6]
Crystal violet	424	phenyl-C ⁺ -phenyl bending [7]
	534	skeletal ring vibrations and ring C-H deformations
		[7]
	915	ring skeletal vibration of radical orientation [7]
	1172	C-H in-plane bending [7]
Glyphosate	455	O-P=O bending [8]
	774	P-O bending [8]
	860	P-O stretching [8]
	1035	C-OH stretching [8]
Methylene blue	450	C-N-C deformation [9]
	505	C-N-C deformation [9]
	1390	C-H in-plane ring deformation [9]
	1600	C-C ring stretching [9]
Thiram	440	CSS symmetric stretching [10]

	562	S-S stretching [10]
	1143	CH3 rocking [10]
	1365	CH3 bending; C-C stretching [10]
Tricyclazole	430	C-N-C deformation [11, 12]
	985	C-C symmetric stretching [11, 12]
	592	C-S-C deformation vibration [11, 12]
	1312	C-N stretching [11, 12]
	1372	C-N stretching [11, 12]
Urea	1000	C-N stretching [13]

References

[1] R. Chen, H. Shi, X. Meng, Y. Su, H. Wang, Y. He, Dual-Amplification Strategy-Based SERS Chip for Sensitive and Reproducible Detection of DNA Methyltransferase Activity in Human Serum, Analytical Chemistry 91(5) (2019) 3597-3603.

[2] M.Q. Doan, N.H. Anh, N.X. Quang, N.X. Dinh, D.Q. Tri, T.Q. Huy, A.-T. Le, Ultrasensitive Detection of Methylene Blue Using an Electrochemically Synthesized SERS Sensor Based on Gold and Silver Nanoparticles: Roles of Composition and Purity on Sensing Performance and Reliability, Journal of Electronic Materials 51(1) (2022) 150-162.

[3] T. Tanaka, A. Nakajima, A. Watanabe, T. Ohno, Y. Ozaki, Surface-enhanced Raman scattering of pyridine and p-nitrophenol studied by density functional theory calculations, Vibrational Spectroscopy 34(1) (2004) 157-167.

[4] Y. Fan, K. Lai, B.A. Rasco, Y. Huang, Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis, LWT - Food Science and Technology 60(1) (2015) 352-357.

[5] K. Lai, Y. Zhang, R. Du, F. Zhai, B.A. Rasco, Y. Huang, Determination of chloramphenicol and crystal violet with surface enhanced Raman spectroscopy, Sensing and Instrumentation for Food Quality and Safety 5(1) (2011) 19-24.

[6] M.L. de Souza, D.C. Tristão, P. Corio, Vibrational study of adsorption of Congo red onto TiO2 and the LSPR effect on its photocatalytic degradation process, RSC Advances 4(44) (2014) 23351-23358.

[7] S. Fateixa, H.I.S. Nogueira, T. Trindade, Surface-Enhanced Raman Scattering Spectral Imaging for the Attomolar Range Detection of Crystal Violet in Contaminated Water, ACS Omega 3(4) (2018) 4331-4341.

[8] J.C.S. Costa, R.A. Ando, A.C. Sant'Ana, P. Corio, Surface-enhanced Raman spectroscopy studies of organophosphorous model molecules and pesticides, Physical Chemistry Chemical Physics 14(45) (2012) 15645-15651.

[9] L. Zhong, Y. Hu, D. Xing, Adsorption orientation of methylene blue (MB+) on the silver colloid: SERS and DFT studies, 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, 2009, pp. 1-2.

[10] J.S. Kang, S. Hwang, C.-J. Lee, M.-S.J.B.o.T.K.C.S. Lee, SERS of dithiocarbamate pesticides adsorbed on silver surface; Thiram, 23 (2002) 1604-1610.

[11] H. Tang, D. Fang, Q. Li, P. Cao, J. Geng, T. Sui, X. Wang, J. Iqbal, Y. Du, Determination of Tricyclazole Content in Paddy Rice by Surface Enhanced Raman Spectroscopy, Journal of Food Science 77(5) (2012) T105-T109.

[12] Q.-Q. Li, Y.-P. Du, Y. Xu, X. Wang, S.-Q. Ma, J.-P. Geng, P. Cao, T. Sui, Rapid and sensitive detection of pesticides by surface-enhanced Raman spectroscopy technique based on glycidyl methacrylate–ethylene dimethacrylate (GMA–EDMA) porous material, Chinese Chemical Letters 24(4) (2013) 332-334.

[13] A. Culka, J. Jehlička, Raman microspectrometric investigation of urea in calcite and gypsum powder matrices, Journal of Raman Spectroscopy 41(12) (2010) 1743-1747.