Supporting Information

Stability and Photocurrent Enhancement of Photodetectors by Core/Shell Structured CsPbBr₃/TiO₂ Quantum Dot and 2D Materials

Chathurika Maduwanthi¹, Chao-An Jong², Waleed S. Mohammed³, Shu-Han Hsu^{1*}

¹ School of Integrated Science and Innovation, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, 12120, Thailand.

² Taiwan Semiconductor Research Institute, National Applied Research Laboratories, Hsinchu 300091, Taiwan, R.O.C.

³ Center of Research in Optoelectronics, Communication and Control Systems (BU-CROCCS), Bangkok University, Pathum Thani 12120, Thailand.

*Corresponding Author's E-mail: <u>shuhanhsu@siit.tu.ac.th</u>.

Synthesis of CsPbBr3 in Cs4PbBr6 QDs

Figure S1 shows XRD and absorbance curves of $CsPbBr_3$ in Cs_4PbBr_6 QDs, when CsBr: $PbBr_2$ molar ratio was 1:1.

Figure S1: (a) Absorption and emission (b) XRD spectrum of CsPbBr₃ in Cs₄PbBr₆ QDs.

Figure S2: (a) TEM image of $CsPbBr_3/TiO_2 - core/shell$ structure along with the energy dispersive X-ray (EDX) elemental mapping profiles of (b-f) Cs, Pb, Br, Ti and O

Responsivity (R)(A/W) =
$$\frac{I_{light} - I_{dark}}{P_{inc} \times A_{active \ cross \ section}}$$

 $P_{inc} = laser power density$

$$EQE = \frac{h \times c \times R}{e \times \lambda}$$

$$D^* = \sqrt{\frac{A}{2e \times I_{dark}}} \times R$$

Table S1: Device performance of three PDs at 5 V.

PD	I _{ill}	I _{dark}	ΔI_{ph}	Response	Responsivity	EQE(%)	Detectivity
			-	time	(R) (A/W)		(Jones)
				(seconds)			
CsPbBr ₃ QDs	8 ± 0.5 _n A	$0 \pm 0.5 \text{ nA}$	8.5 ± 0.5	2.63	0.1	2.89×10^{-1}	3.9×10^{13}
PD			nA				
CsPbBr ₃ /TiO ₂	$38 \pm 0.5 \text{ nA}$	$20 \pm 0.5 \text{ nA}$	$18 \pm 0.5 \text{ nA}$	3.63	0.22	6.12×10^{-1}	6.8×10^{12}
PD							
CsPbBr ₃ /TiO ₂ /	$750 \pm 1 \mu A$	$450 \pm 1 \mu A$	$300 \pm 1 \mu A$	2.59	3696	1.02×10^{4}	7.6×10^{14}
MXene PD							

Figure S3 photocurrent – time response of the CsPbBr3/ TiO2 photodetector measured in the dark and under illumination of blue laser with 200s alternatively pulse after storage in nitrogen box for six weeks.

Figure S4: (a) SEM image of CsPbBr₃/TiO₂ PD along with the energy dispersive X-ray (EDX) elemental mapping profiles of (b-f) Cs, Pb, Br, Ti and O

Figure S5: (a) SEM image of CsPbBr3/ TiO₂/MXene PD along with the energy dispersive X-ray (EDX) elemental mapping profiles of (b-g) Cs, Pb, Br, Ti, O and C