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Figure S1 Spatial emission properties of as-fabricated CsPbBr3 QD VSCEL. 

Figure S2 FDTD simulation for reflection spectrum with the perpendicular incidence. 

Figure S3 PL measurement at 80 K. 

Figure S4 Lasing characterization of CsPbBr3 QDs VSCEL after one-year preservation. 

Figure S5 Photoluminescence spectra and their fitting curves by Voigt function.  

Figure S6 AFM image of CsPbBr3 QDs spin-coated on DBRs. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S1 Spatial emission properties of as-fabricated CsPbBr3 QD VSCEL. (a) Fluorescence 

image of fabricated CsPbBr3 QDs embedded microcavity. Scale bar: 15 μm. Inset: PL intensity 

mapping image of the microcavity sample, which is collected from the marked region. Scale 

bar:500 nm. (b) PL spectra collected across the labeled line with a small step of 250 nm. The 

color traces from bottom to top stand for the spectra taken from left to right along the red dash 

line in the insert of (a). (c)-(d)The intensity, line width, and peak position of PL emission across 

the labeled line from left to right, respectively. The solid line in (c) is a fitting curve with a 

Gaussian function.  



 

Figure S2 (a) Simulated reflection spectra of cavities with various thicknesses. (b) Wavelength 

of Mode 1 (i.e., the resonance mode in the longer wavelength) as a function of the thickness of 

PMMA. 

    As a Fabry-Pérot microcavity, the cavity length between two DBRs is designed as 

𝐿 = 𝑁
𝜆

2𝑛𝑐
 

where 𝑁 is a positive integer, 𝜆 is the optical wavelength, 𝑛𝑐 is the effective group 

index of the cavity.  

    Here, the PMMA layer works as the spacer inside the cavity and controls the cavity 

length. As shown in Fig S2a, the cavities constructed by various PMMA thicknesses of 

300, 350, 400, and 450 nm support resonances at 482.1, 512.7, 540.1, and 565.3 nm, 

respectively. These modes are denoted as mode 1. The cavities constructed by the 

PMMA thicknesses of 400 and 450 nm also show resonances at 455.3 and 477.7 nm, 

but they are out of the PL emission range of CsPbBr3 QDs, noted as mode 2. The 

wavelength of resonance mode 1 increases linearly with the cavity wavelength (Fig 

S2b), which is consistent well with the theoretical Fabry-Pérot resonance. The cavity 

length with 400 nm PMMA is chosen because it exhibits a resonance mode at 540.1 nm 



(blue curve in Fig S2a), which is well overlapped with the gain spectrum of perovskite 

material (i.e., the lower energy side of the emission range). This spectral overlap 

enables the strong confinement of PL emission, optical gain, and establishment of lasing. 

 

 

Figure S3 PL measurement at 80 K. (a) PL spectrum of the isolated CsPbBr3 QDs, which is 

diluted to the same concentration used for CsPbBr3 VCSEL. (b) PL spectrum of the high-density 

ensembles of CsPbBr3 QDs, which is 10 times of the concentration of the CsPbBr3 QDs in (a). 

 



 

Figure S4 Lasing characterization of CsPbBr3 QDs VSCEL after one-year preservation. (a) PL 

spectra collected at the small range under a variety of low excitation powers (≤ 300 nW). (b) 

PL spectra collected at the extensive range under a variety of excitation powers (≥ 400 nW). 

The intensity (c) and line width (d) of PL emission as a function of the excitation power. The 

light blue, orange, and green regions represent the spontaneous emission state, superlinear 

amplification state, and lasing emission state, respectively. 

 



 

Figure S5 Photoluminescence spectra taken at low excitation powers (< 250 nW) and their 

fitting curves by Voigt function.  

 



 

Figure S6 AFM image of CsPbBr3 QDs spin-coated on DBRs for the spatial distribution. The 

CsPbBr3 QDs were in the same concentration as that of QDs embedded in a microcavity, which 

has been diluted enough to be isolated. Scale bar: 1μm. The marked region is zoomed-in and 

presented in Fig 1c. 

 

 

 

 


