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S1. Refined Gibbs-Thompson type formulation for small faceted nanoclusters 
 
The standard Gibbs-Thompson (GT) treatment of the energetics and chemical potential 
for nanoclusters (NCs) of size N atoms writes the system energy, EN, or free energy as 

the sum of a bulk term,  N, and an interface or surface term,  N2/3 (scaling like NC 
surface area). This leads to a standard GT-type expression for the chemical potential, 

N = dEN/dN =  + (2/3) N-1/3 (noting that N1/3 is proportional to R, an effective radius 
of curvature for the 3D NC [1,2]).  This formulation can be applied to either unsupported 
or supported NCs. However, for small faceted NCs the above formulation is not 
expected to be effective, and instead it is more natural to write 
 

EN =  N (bulk) + 1 N2/3 (surface) + 2 N1/3 (edge) + 0 N0 (vertex), so  (s1) 
 

N = dEN/dN =  + (21/3) N-1/3 + (2/3) N-2/3.       (s2) 
 
This formulation has been used previously to fit the energetics for supported TPs [3].  
 

 
For another perspective on behavior for {100}-epitaxially supported faceted NCs, it is 
instructive to consider behavior for the sequence of “ideal” closed-shell TPs described in 
the main text. These have an equal number of atoms along the edge between adjacent 
{111} side facets, and along the edges between the {100} top and {111} side facets. 
Consequently, they mimic the continuum Winterbottom shape for the NC for our lattice-
gas model. These correspond to sizes N = 13, 50, 126,… for heights k = 2, 3, 4,… In 
general, for these ideal closed-shell TPs, one has that 
 
N = N(k) = k(2k-1)(7k-1)/6  = (14k3 - 9k2 +1)/6      (s3) 
 

and EN = EN(k) = -(14k3 - 16k2 + 6k - 1).        (s4) 
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Thus, for large k (and N), it is clear that EN  -6 N, yielding a limiting value for the 

chemical potential,  = dEN/dN  -6. This result reflects the feature that each atom in 
the bulk of an fcc crystal has 12 shared bonds to neighboring atoms. 
 
Introducing a new variable y = (6N/14)1/3, it is convenient to rewrite (s3) as 
 
y = k[1 - (9/14)k-1 + (1/14)k-2]1/3   or   y-1 = k-1 [1 - (9/14)k-1 + (1/14)k-2]-1/3.  (s5)    
 
Rewriting the second expression as a Taylor expansion for y-1 in terms of k-1 yields 
 
y-1 = k-1 [1 + (3/14)k-1 + (10/147)k-2 + (5/196)k-3 + (515/49392)k-4 +…].  (s6) 
 
Inversion of this series then yields  
 
k-1 = y-1 [1 - (3/14)y-1 + (1/42)y-2 - (5/2744)y-3 + (61/345744)y-4 +…], so  (s7) 
 
k = y[1 - (3/14)y-1 +…]-1 = y[1 + (3/14)y-1 + (13/588)y-2 + (1/686)y-3 +…].  (s8) 
 
Finally, substituting (s8) into (s4) yields 
 
EN =  
 

-14y3 {[1+(3/14)y-1+…]3 - (8/7)y-1[1+(3/14)y-1+…]2 + (3/7)y-2[1+(3/14)y-1+…] - (1/14)y-3}  
 

= -14y3 {1 - (1/2)y-1 + (1/7)y-2 - (47/1176)y-3 + (647/403368)y-4 - … }  
 

= -6 N {1 - (1/2)(3/7)-1/3 N-1/3 + (1/7)(3/7)-2/3 N-2/3 - (47/1176)(3/7)-1 N-1 + … }. (s9) 
 
Consequently, for large N, one has that  
 

N = dEN/dN =  {1 - (1/3)(3/7)-1/3 N-1/3 + (1/21)(3/7)-2/3 N-2/3 -…},   (s10) 
 

i.e., a Taylor series expansion for N in powers of N-1/3. 
 
In summary, as anticipated by the heuristic expression (s2), the chemical potential of 

atoms in small faceted NCs is not well-described by a standard GT type relation, N = 

 + (2/3)R-1, associated with bulk and surface contributions to the NC energy. Here, R 
= N1/3 is an effective NC radius of curvature. Rather, it is more appropriate to include 
additional terms reflecting edge and vertex contributions to the NC energy. The edge 
contribution to the chemical potential is expected to scale like R-2. However, utilizing an 
exact expression for the energy of “ideal” truncated pyramids in our atomistic lattice-gas 

model, we find that the chemical potential as calculated via N = dEN/dN is given by an 
inverse power series in N1/3 or R, (s10). Calorimetric evidence for the need for such 
corrections to GT-type relations has been presented [4]. 
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S2. Comprehensive analysis of the size-dependent NC thermodynamics 
 

Table S1 provides an expanded version of Table I where thermodynamic and structural 
information is provided for the ground state NC configurations in our stochastic lattice-
gas model for sizes N = 13 - 126.  
 

Table S1. Comprehensive analysis of ground state configurations and energetics for the lattice-
gas model for {100} epitaxially supported 3D clusters sizes N = 13-126 with f = 0.75. Particularly 
stable closed-shell NC sizes are indicated in larger bold red font. Note that these display strong 
local minima in DN. Other less stable closed shell-sizes are indicated in smaller non-bold red 
font. We also indicate other NC sizes where DN has local maxima and local minima. We also 
indicate in green font cases where a few atoms are added to a closed-shell size, NCs, but the 
base is actually smaller than for Ncs due to substantial rearrangement of the NC configuration. 
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S3. Schematics for interlayer diffusion and corner rounding at the NC base 
 
Figure S1 provides a schematic illustrating the interlayer diffusion process in our 
stochastic model. This process follows the default prescription for the model of hopping 
to available NN fcc sites which are connected to the NC. Specifically, for all types of 
close-packed monoatomic steps, downward interlayer transport involves a first lateral 
hop which positions the atom partly overhanging the step edge followed by a second 
downward hop to an fcc adsorption site at the base of the step.  
 

 
 
Figure S1. Downward interlayer transport at close-packed steps in our stochastic model via a 
sequence of two hops to NN fcc sites: (a) {111}-microfaceted step on a stepped {100} surface; 
(b) {111}-microfaceted step and (c) {100}-microfaceted step on a stepped {111} surface. 

 
Figure S2 provides a schematic illustrating corner rounding in our stochastic model of a 
hopping atom at the rectangular based of a supported NC. This process involves 
hopping to a second NN site where the atom is disconnected from (i.e., not bonded to 
atoms in) the NC. However, the atom remains four-fold coordinated to the substrate. 
 

 
 
Figure S2. Corner rounding of an atom via a 2NN site at the rectangular base of a NC. 
Substrate atoms are shown in yellow and NC atoms in various shades of blue.   
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S4. CM motion of NCs induced by surface atom hops 
 
For atoms hopping “horizontally” on the top {100} facet, or along the base of the NC, it is 
clear that each hop of distance ‘a’ (the surface lattice constant) of the atom to a NN site 

produces a lateral shift in the NC center of mass (CM) position of RCM = a/N.  
 
However, for atoms hopping on the sloped {111} side facets, the situation is more 
complicated. See Figure S3. Of the 6 possible hops between fcc(111) adsorption sites 
on the side facet, two are “horizontal” of distance ‘a’ as for hops on the top {100} facets 
and along the base. Consequently, these also produce a lateral shift in the NC CM of 

RCM = a/N. In contrast, for the other 4 possible hops, the horizontal projection of the 

atom motion only corresponds to a distance 2-1/2 a, so the lateral shift of the CM is RCM 
= 2-1/2 a/N. 
 
Considering the random walk of the atom on a (large) {111} side facet, if rj denotes the 
horizontal projection of the displacement on the jth hop, then the horizontal displacement 

of the CM of the NC after n atop hops is given by Rn = j=1-n rj/N. Given that rj are 
independent for different j, but have the same probability distribution satisfying <rj> = 0 
for each j, from the above analysis it follows that  
 

<ri.rj> = 0 for i  j,  and  <rj.rj> = 4/6 (2-1/2a)2 + 2/6 (a)2  = (2/3)a2.   (s11) 
 
It then follows that  
 

<RnRn> = j=1-n <rj.rj>/N2 = n <rj.rj>/N2 = n (2/3)a2/N2.     (s12) 
 
This result leads to the additional factor of 2/3 appearing in the expression (4) for 
DN(111) relative to the expressions (3) for DN(100) and DN(base). 
 
 

 
 
Figure S3. Projection onto a horizontal plane of the distances associated with hopping of an 
atom on a sloped {111} side facet.  
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S5. Further details on the refined-MF analysis for N = Ncs + j with j = 1-3 
 
For N = Ncs + 1, the ground state involves a single surface adatom either on the top 
{100} facet or at the NC base of a closed-shell TP core of size Ncs atoms. Thus, the 

ground state with energy EN has a degeneracy GS = A100 + Abase. The first excited state 

has system energy is EN + . This excited state includes configurations where that 
adatom is on a {111} side facet with degeneracy A111. However, the first excited state 
also includes configurations where an atom is removed from the core (specifically from 
one of the 4 corners of the top {100} facet) and combines with the above-mentioned 
adatom on the {100} facet or at the NC base to form a dimer. The degeneracy of these 
configurations is roughly 4(2A100 + Abase), the factor of 2 multiplying A100 reflecting the 2 
dimer orientations on the {100} facets. Of course, there are also higher excited states. 
Thus, the canonical partition function for the NC of N atoms can be written in the form 
 

QN = (A100 + Abase) exp[-EN] + {A111 + 4(2A100 + Abase)} exp[-{EN + }] +…. (s13) 
   
 
Thus, the probability of an adatom either on the {100} facet or at the base, P100+base, and 

the corresponding densities n100  nbase, satisfy 
 

P100+base  (A100 + Abase) exp[-EN]/QN  1, and      (s14) 
 

n100  nbase  P100+base/(A100 + Abase)  1/(A100 + Abase),     (s15) 
 
as noted in the manuscript. On the other hand, the probability, P111, to find at adatom on 
the {111} facet, and the corresponding density, n111, satisfy 
 

P111  A111 exp[-(EN  + )]/QN,  and        (s16) 
 

n111  P111/A111  exp[-]/(A100 + Abase) = exp[-] nbase.    (s17) 
 
 
For N = Ncs + 2, the ground state NC configuration consists of a dimer adsorbed on the 

{100} top facet (for Ncs  18), or at the base, of a closed-shell TP “core”. As noted in the 
manuscript, one complication with this case is that when the dimer dissociates, it 
creates two mobile surface adatoms. As a result, some refinement of the analysis 
leading to (10) is required. To aid this analysis, Figure S4 provides a schematic 
summary of not just the ground state NC configurations, but also of the most relevant 
low-lying energetically excited states. 
 

Let GS denote the degeneracy of the ground state (GS), and EGS its energy. This 
corresponds to the number of dimer configurations on the TPmxn,k core core, and is given 
by   
 

GS = 2(m+n-2) + [(n-k-1)(m-k)+(m-k-1)(n-k)],      (s18) 
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the first term corresponding to dimers at the base, and the last two to dimers on the top 

{100} facet. Let ex(j) denote the degeneracy of excited state configuration j in Figure 
S4, then the canonical partition function for the system has the form 
 

QN = GS exp[-EGS] + j=1-3 ex(j) exp[-{EGS + )] + j=4,5 ex(j) exp[-{EGS + 2)] +….  
      

       GS exp[-EGS].         (s19) 
 
 

 
 
Figure S4. Schematic of ground state and selected low-lying excited state NC configurations for 
N = Ncs + 2.  

 
 
Ignoring more highly excited states, it follows that the density, ntop, of mobile surface 
atoms on the top facet satisfies 
 

n100  [2ex(2)/GS + ex(3)/GS] exp[-]/A100  (A100 + Abase - 1) exp[-]/GS, (s20) 
 

using that ex(2)  A100(A100 - 1)/2 and ex(3)  A100 Abase. A similar analysis for the 
density, nbase, of mobile surface atoms at the base yields 
 

nbase  [2ex(1)/GS + ex(3)/GS] exp[-]/Abase  (A100 + Abase - 1) exp[-]/GS, (s21) 
 

using that ex(1)  Abase(Abase - 1)/2 and ex(3)  A100 Abase (so n100  nbase). Similarly, for 
the density, n111, of mobile surface atoms on the {111} side facets, one obtains 
 

n100  [ex(4)/GS + ex(5)/GS] exp[-2]/A111  (A100 + Abase) exp[-2]/GS, (s22) 
 

using that ex(4)  Abase A111 and ex(5)  A100 A111. 
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For N = Ncs + 3, the ground state usually consists of a trimer adsorbed on the {100} top 

facet (for Ncs  18) or at the base of a closed-shell “core”. See Figure S5. Then, N is 
the number of locations on the core of linear or bent configurations of the trimer on the 

top {100} facet plus the number of linear or triangular configurations at the base. N-1 is 
the number of locations on the core of a dimer as specified above in discussion of the 
case N = Ncs + 2. 
 
 

 
 
Figure S5. Schematic of ground state NC configurations for N = Ncs + 3.  
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S6. Beyond-MF MEP-based treatment of NC diffusion 
 

In Figure 4, we have shown E(q) versus q for N = 50, 51, and 53. For the case of 
TP5x5,3 where N = 50, in Figure S6 we show the corresponding NC configurations for 
each q. The 12 atom side facet from which atoms are being removed is shown to the 
left of the blue arrow. Locations from which those atoms are removed are shown by the 
red – sign. The 12 atom side facet to which a new layer our atoms is being added is 
shown on the right of the blue arrow. In some cases, there are energetically degenerate 

configurations which are also shown. For N = 50, E(q) versus q is symmetric about q = 
6, and we do not show configurations for q = 7 -12. 
 
 

 
 
Figure S6. Schematic of configurations on the MEP for a TP5x5,3 with N = 50 during disassembly 
of the outer layer on one facet and formation of a new layer on another facet.  Note that these 

facets have a total of 12 atoms. The – shows locations of atoms removed, and the + shows the 

location of atoms added. We also show the energy change E = E(q) for different numbers, q, 
of transferred atoms. 
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S7. Master equation based analysis for N = 52 versus N = 53. 
 

We perform a first-passage time analysis based on the entire MEP profile, E(q) versus 

q to assess the characteristic time, , for disassembly and reformation of outer layers of 

facets. The diffusion rate for the NC is proportional to 1/. As noted in Sec. 5.3, with the 
system starting in state q = 0 at time t = 0, let P(q, t) denote the probability to be in state 

q at time t so that P(q, 0) = q,0. Then, one considers the set of master equations 
 

d/dt P(q, t) = k+(q-½ )P(q-½, t) + k-(q+½)P(q+½, t) - [k+(q) + k-(q)] P(q, t),  (s23)  
 

where k(q) is the rate to make a transition from state q to state q½ as determined from 
the energy barriers along the MEP. For N = 52 or 53, the total number of atoms 
transferred is qmax =12 then q = qmax = 12 is assigned as an absorbing or trapping state 

so that k(12) = 0.   
 
Recall that states for integer q correspond to having transferred q atoms from the 
disassembling facet to the new layer forming on another facet. Higher-energy states for 
half-integer q correspond to configurations where the adatom being transferred is still on 

a {111} side facet or hopping around the NC base. The rates, k(q), for q < 12 are 
selected with a Metropolis form satisfying detailed-balance. Specifically, rates for all 
transitions from states which half-integer q which are downhill in energy have a common 

value of k =   exp[-Ediff] = k0. (Note that Figure 8 does not explicitly show the 
presence of an activation barrier, Ediff, for a transition from higher-energy states with 
half-integer q to lower-energy states. Again, Ediff is the barrier associated with single-

atom diffusion.) For uphill transitions where the state energy increases by E > 0, we 

set k = exp[-E] k0. Since E = m  for m = 1, 2, or 3, setting a = exp[-], for uphill 
transitions one has that k =   am k0. For numerical analysis of the master equations, it is 
natural to introduce a rescale time variable x = k0 t, so then rates in the rescaled master 
equations d/dx P(q,t) = … are unity for downhill transitions, and have the form am for 
uphill transitions. 
 
Figure S7 reproduces the MEP for N = 52 shown previously in Figure 7, but also 

indicates the rescaled rates for transitions between adjacent states q  q½ (with rates 
for transitions uphill in energy shown in red font, and rates for downhill transitions in 
blue font).  
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Figure S7. Energies (black square symbols) along the MEP for disassembly and formation of 
outer layers of NC facets for size N = 52. Also shown are the rescaled rates used in the master 
equation analysis for transitions between adjacent states along the MEP (typed in red or blue 
font for each transition).  
 

Using the MathematicaTM type notation P(q, t) = P2q[x = k0t], for q = 0, ½, 1,…, 12, and 

P2q[x] = d/dx P2q[x], the explicit master equations for N = 52 have the form 
 

P0'[x] == P1[x] - P0[x] a^3 ,  
P1'[x] == P0[x] a^3 + P2[x] a^2  - 2 P1[x],  
P2'[x] == P1[x] + P3[x] - P2[x] (a^2 + a^3),  
P3'[x] == P2[x] a^3  + P4[x] a^2 - 2 P3[x],  
P4' [x] == P3[x] + P5[x] - 2 P4[x] a^2,  
P5'[x] == P4[x] a^2 + P6[x] a ^3 - 2 P5[x],  
P6'[x] == P5[x] + P7[x] - 2 P6[x] a^3,  
P7'[x] == P6[x] a^3 + P8[x] a^2 - 2 P7[x],  
P8'[x] == P7[x] + P9[x] - 2 P8[x] a^2,  
P9'[x] == P8[x] a^2 + P10[x] a ^3 - 2 P9[x],  
P10'[x] == P9[x] + P11[x] - 2 P10[x] a^3,  
P11'[x] == P10[x] a^3 + P12[x] a^2 - 2 P11[x],   
P12'[x] == P11[x] + P13[x] - 2 P12[x] a^2,  
P13'[x] == P12[x] a^2 + P14[x] a ^3 - 2 P13[x],  
P14'[x] == P13[x] + P15[x] - 2 P14[x] a^3,  
P15'[x] == P14[x] a^3 + P16[x] a^2 - 2 P15[x],  
P16'[x] == P15[x] + P17[x] - 2 P16[x] a^2,  
P17'[x] == P16[x] a^2 + P18[x] a ^3 - 2 P17[x],  
P18'[x] == P17[x] + P19[x] - P18[x] (a^3 + a^2),  
P19'[x] == P18[x] a^2 + P20[x] a^3 - 2 P19[x],  
P20'[x] == P19[x] + P21[x] - P20[x] (a^3 + a^2),  
P21'[x] == P20[x] a^2 + P22[x] a - 2 P21[x],  
P22'[x] == P21[x] + P23[x] - P22[x] 2 a,  
P23'[x] == P22[x] a - 2 P23[x], 

P24'[x] == P23[x].          (s24) 
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A similar, but different set of equations were also constructed for the case N = 53 based 
upon the somewhat different MEP shown in Figure 5. With the initial conditions P0[0] = 
1 and P2q[0] = 0 for q > 0, these equations are integrated until P24[x] increases from 0 
to 0.5, i.e., until P24[xc] = 0.5, and the characteristic time for facet disassembly and 

formation extracted from xc = k0 . 
 
Numerical integration of the master equations yields: xc = 3.62 x 107 (1.97 x 107) for N = 
52 (N = 53) when a = 0.02399 (corresponding to T = 700 K for Ag NCs); xc = 1.50 x 105 
(1.00 x 105) for N = 52 (N = 53) when a = 0.1 (corresponding to T = 1130 K for Ag NCs); 

and xc = 230 for N = 52 and N = 53 when a = 1 (T ).  
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