

One Dimensional Ferroelectric Nanothread with both Axial and Radial Polarization

Jiawei Huang,[†] Changming Ke,^{‡,¶} Wei Zhu,^{‡,¶} and Shi Liu^{*,‡,¶}

[†]*School of Science, Westlake University, Hangzhou, Zhejiang 310024, China*

[‡]*Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics,
School of Science, Westlake University, Hangzhou, Zhejiang 310030, China*

[¶]*Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang
310024, China*

E-mail: liushi@westlake.edu.cn

I. Phonon spectra of ω_3 nanothreads of III_2VI_3

The phonon spectra of ω_3 nanothreads of III_2VI_3 along the high-symmetry path ($\Gamma \rightarrow \text{Y}$) are shown in Fig. S1. For each q point, we calculated the corresponding phonon frequencies with density functional perturbation theory. Here, we did not perform Fourier interpolation. The phonon spectrum of ω_3 nanothread of Ga_2Se_3 has no imaginary vibrational frequencies, confirming its dynamical stability. Ga_2S_3 , Ga_2Te_3 and Al_2Te_3 are probably marginally stable as only the lowest acoustic mode has small imaginary frequencies ($< 10i \text{ cm}^{-1}$), while all the other nanothreads of Al_2S_3 , Al_2Se_3 , Ga_2S_3 , In_2S_3 , In_2Se_3 , and In_2Te_3 are all unstable for their large imaginary frequencies near Y .

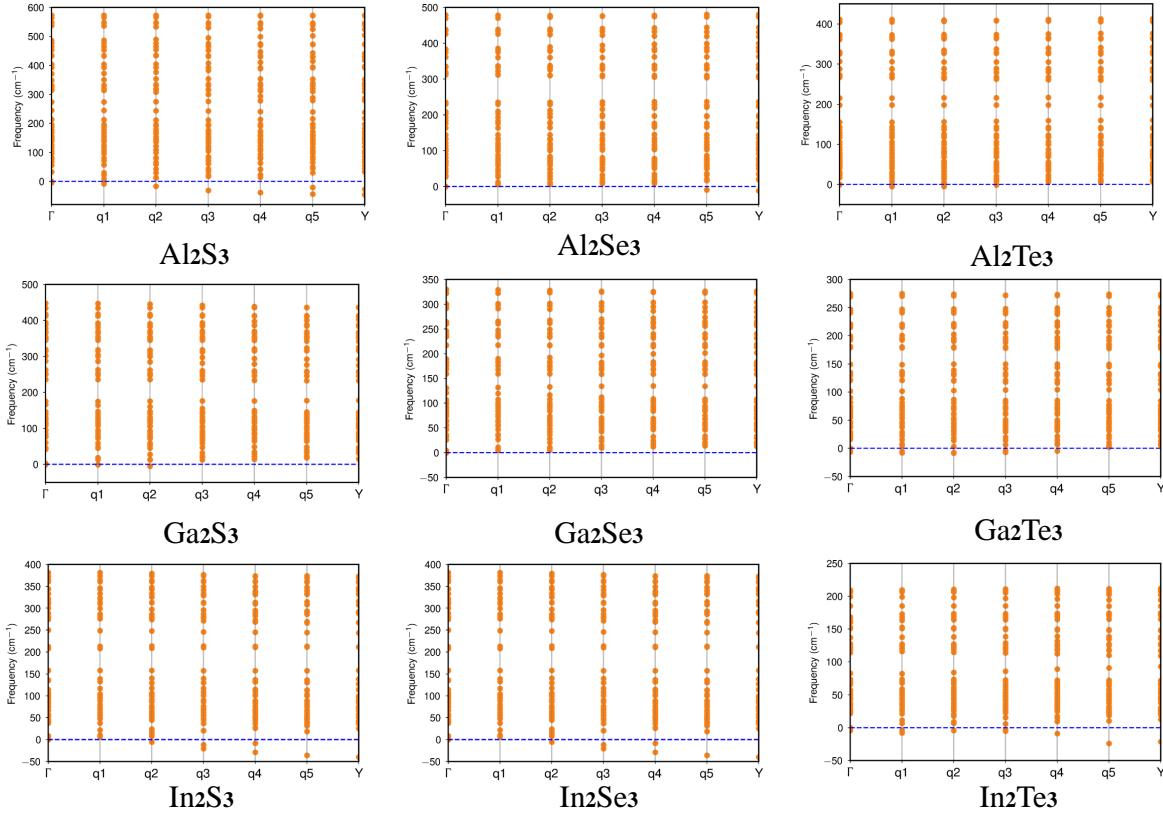


Figure S1: Phonon spectra of ω_3 nanothreads of III_2VI_3 ($\text{III}=\text{Al, Ga, In}; \text{VI}=\text{S, Se, Te}$).

II. Packed ω_3 nanothreads

To estimate the density of packed ω_3 nanothreads, we constructed a cell containing four aligned ω_3 Ga_2Se_3 nanothreads along the b axis (Fig. S2) and fully optimized both the atomic positions and cell dimensions. The equilibrium distance between nanothreads in the optimized cell is ≈ 3.5 Å. The calculated van der Waals (vdW) binding energy is ≈ 0.4 eV/Å, corresponding to a vdW binding energy of ≈ 60 meV/Å². This value is comparable to the vdW binding energy in many layered vdW materials (e.g., 25~30 meV/Å² for layered compounds of transition metal dichalcogenides.¹) The averaged lattice constants of one single nanothread in a crystal is $\bar{a} = 9.725$ Å, $\bar{b} = 6.158$ Å, and $\bar{c} = 9.251$ Å. Assuming a 1D domain of 3 unit cells being the minimum storage unit, the theoretical data density for an atomically thin layer of 1DFENT array in the yz plane is 1bit/ $3\bar{b}\bar{c}$ ≈ 600 Gb/mm². Furthermore, by packing 1DFENTs into 3D arrays, the upper bound of the volumetric density could approach 1bit/ $3\bar{a}\bar{b}\bar{c}$ ≈ 600 Petabit/mm³.

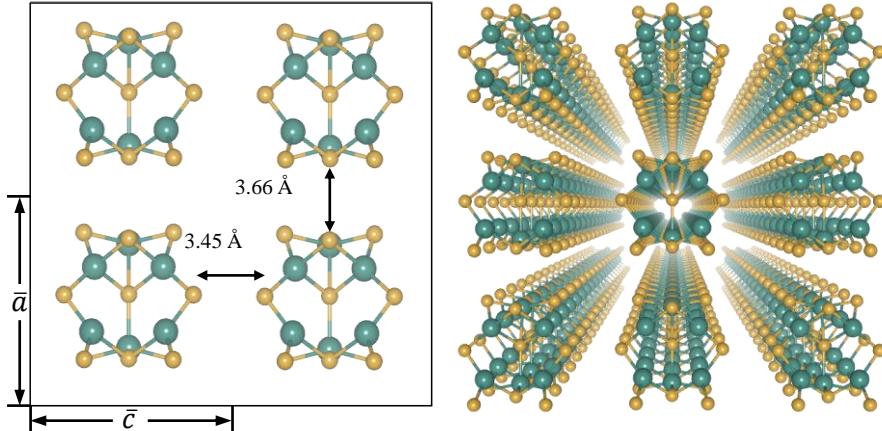


Figure S2: DFT optimized cell containing four parallel ω_3 nanothreads.

III. ω_3 nanothreads on graphene

We designed a model in which graphene serves as a 2D substrate to support an ω_3 nanothread of Ga_2Se_3 . The atomic positions in this model have been fully optimized with DFT. As shown in Fig. S3, the gap between the ferroelectric nanothread and the graphene is 3.5 Å, a typical vdW distance.

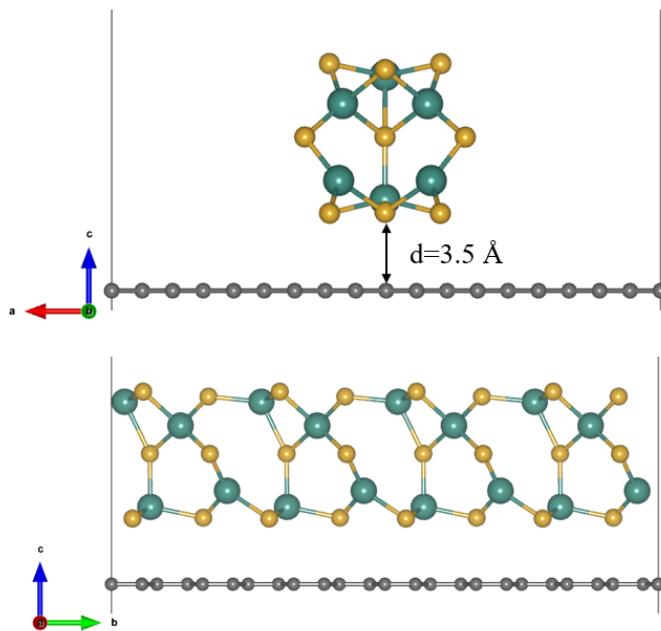


Figure S3: DFT optimized ω_3 nanothreads supported by graphene.

IV. Raman spectrum of ω_3 nanothreads

We calculated the Raman spectrum of ω_3 nanothread of Ga_2Se_3 (Fig. S4), which could be helpful for experimental characterizations of nanothreads.

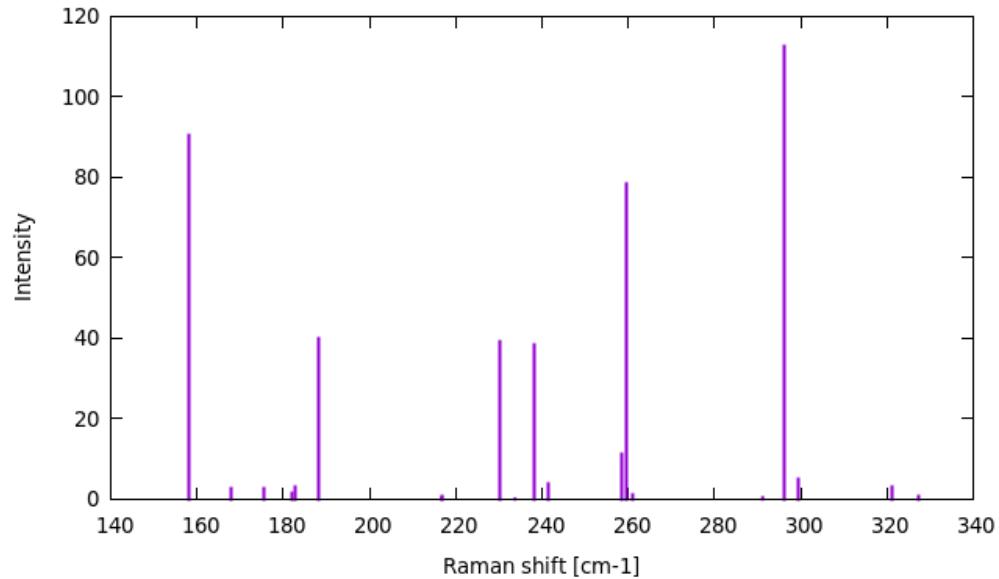


Figure S4: Raman spectrum of ω_3 nanothread of Ga_2Se_3 .

References

(1) Rydberg, H.; Dion, M.; Jacobson, N.; Schröder, E.; Hyldgaard, P.; Simak, S. I.; Langreth, D. C.; Lundqvist, B. I. Van der Waals Density Functional for Layered Structures. *Phys. Rev. Lett.* **2003**, *91*, 126402.