Nanofluidic sensing platform based on robust and flexible graphene oxide/chitosan nanochannel membranes for detection of glucose and urea

Kou Yang^{1,2}, Qinyue Wang^{1,3}, Kostya S. Novoselov^{1,2} and Daria V. Andreeva^{1,2}*

¹Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore

²Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore

³ School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Shaanxi, China

Supplementary Figure 1. A sketch of the preparation procedure of GGC membranes.

Supplementary Figure 2. Zeta potential of GO (0.1 mg mL⁻¹), CS (0.1 mg mL⁻¹) and GO/CS₅ (0.1 mg mL⁻¹) dispersion at different pH.

Supplementary Figure 3. A transparent and robust large-scale GGC₅ membrane, diameter: 8 cm.

Supplementary Figure 4. Swelling curves of GGC₅ membrane under different pH of water measured by QCM. A Voigt model is used for fitting.

Supplementary Figure 5. Water permeance and swelling capacity of a pristine GO membrane as a function of water pH.

Supplementary Figure 6. Cyclic QCM curve for GGC₅ membrane.

Supplementary Figure 7. Stress-strain curves of GGC membrane immersed in DI water with different pH. Insert data: a magnified stress-strain curve of GGC membrane in pH2 water. Inset image: a digital photo of a robust GGC membrane at pH 10, scale bar: 2 mm.