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Methods

The unit cells shown in Fig. 1 were used to construct first nearest-neighbour TB models with 
parameters generally utilized for graphene (tij = -2.7 eV, ε0 = 0 eV). The band structures for each 
material were generated with the Python-based SISL utility.1 Unit cells were repeated along the 
x and y directions to obtain 300x300 nm2 samples for each material (see Table 1). LSQT 
simulations are based on the Chebyshev polynomial expansion,2 which in our case used 4000 
moments and an energy broadening of 0.02 eV. For the pristine systems, each material was 
calculated using ten different initial random phases, thus obtaining statistically averaged 
quantities. Different time steps were used for the different plots of Fig. 1, ranging from 0.05 to 
2 fs.

For the samples including disorder, we considered ten random puddle distributions of the form 
shown in Eq. 7. In order to speed up the Hamiltonian construction, we imposed a cutoff of the 

Gaussian tail at 6  (Eq. 7), thus neglecting on-site modifications, , lower than 4·10-8 eV. For 𝛽 𝜀𝑖

each puddle distribution we ran ten initial random phase distributions, thus effectively averaging 
over 100 LSQT runs per material, which allowed us to significantly reduce the noise of the 
different calculated quantities.
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Section S1: Ballistic transport at E – EF = 0.7 eV

Fig. S1. Wave packet propagation length computed for the first 5 fs along the direction parallel to GNRs 
(Ly, green curves) and perpendicular to them (Lx, red curves) for a) graphene, b) NPG, c) para-NPG and d) 
meta-NPG in the pristine form. Red dotted lines indicate the average width of the 7-13-AGNR composing 
these NPGs, as highlighted in e).
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Fig. S2. Wave packet propagation length computed for the first 20 fs along the direction parallel to GNRs 
(Ly, green curves) and perpendicular to them (Lx, red curves) for a) graphene, b) NPG, c) para-NPG and d) 
meta-NPG in the pristine form. Red dotted lines indicate the average width of the 7-13-AGNR composing 
these NPGs, as depicted in Fig. S1.

Table S1. Transport anisotropy values at E – EF = 0.7 eV for each considered material in the pristine form.

graphene NPG para-NPG meta-NPG
𝐴= 𝑣𝑦 𝑣𝑥 1.0 6.0 8.6 71.7

Section S2: Characterization of strong localization in NPGs

For situations where scattering strongly affects transport (normally in highly disordered 
systems) the transport regime may evolve from diffusive to weakly or strongly localized.2 The 
weak localization regime is characterized by a slowly decaying conductivity with length, 
following the relation

Eq. (S1) ,
𝜎𝑊𝐿(𝐿) = 𝜎𝑠𝑐 ‒
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)

where  is the semi-classical conductivity (maximum of the curve), e is the elementary charge, 𝜎𝑠𝑐

h is Planck’s constant, L is the wave-packet length along the transport direction and  is the 𝐿𝑠𝑐
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length at which the conductivity equals . In Fig. S3 we plot  for the NPG and para-NPG 𝜎𝑠𝑐 𝜎𝑦(𝐿𝑦)
under electrostatic disorder (see main text for details) along with the weak localization 
prediction for each case using Eq. S1.

Fig. S3. Conductivity along the GNR direction ( ; continuous lines) and its weak localization estimate (𝜎𝑦

; dotted lines) for a) NPG and b) para-NPG at E – EF = 0.4eV.  is obtained from the semi-classical 𝜎𝑊𝐿 𝜎𝑊𝐿

conductivity ( ; see arrows) using equation S1. For further details see section 5.4 in the LSQT review 𝜎𝑠𝑐
𝑦

article.2 Note that meta-NPG has not been included due to its strongly decaying  well beyond the 𝜎𝑦(𝐿𝑦)
weak localization tendency.

As one can see,  decays more strongly in both the NPG and para-NPG than , indicating 𝜎𝑦(𝐿𝑦) 𝜎𝑊𝐿

that all NPGs should be in the strong localization regime under the considered disorder profile. 
Strong localization is characterized by an exponentially decaying conductance with increasing 
wave packet length.2 At a given energy, the conductance may be obtained from the conductivity 
as

Eq. (S2) ,
𝐺(𝐿) = 𝜎(𝐿)

𝑊
𝐿

where L and W are the propagated length and width of the wave-packet and, hence, for each 
in-plane transport direction we get

Eq. (S3)  ; .
𝐺𝑦(𝐿𝑦) = 𝜎𝑦(𝐿𝑦)

𝐿𝑥

𝐿𝑦
𝐺𝑥(𝐿𝑥) = 𝜎𝑥(𝐿𝑥)

𝐿𝑦

𝐿𝑥

For each in-plane direction, in the strong localization regime the conductance is expected to 
decrease according to

Eq. (S4) ,𝐺(𝐸,𝐿) ∝ 𝑒𝑥𝑝[ ‒ 𝐿 𝜉(𝐸)]

where  is the localization length, characteristic of this regime, which provides access to the 𝜉(𝐸)

saturated propagation length ( ),𝐿𝑡=∞

Eq. (S5) .𝐿𝑡=∞(𝐸) = 𝜋·𝜉(𝐸)
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Figs. S4-6 depict  and  and the corresponding exponential fits restricted to the 𝐺𝑦(𝐿𝑦) 𝐺𝑥(𝐿𝑥)
highlighted regions of each plot. The good correspondence between the fits and the calculated 
data confirms the presence of strong localization along both in-plane directions in all NPGs.

Fig. S4. a) Log-scale plots of  and b)  for the NPG at E – EF = 0.4eV and their fit to an 𝐺𝑦(𝐿𝑦) 𝐺𝑥(𝐿𝑥)
exponential decay. Such fitting provides access to the localization length, as shown in Eq. S3.
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Fig. S5. a) Log-scale plots of  and b)  for the para-NPG at E – EF = 0.4eV and their fit to an 𝐺𝑦(𝐿𝑦) 𝐺𝑥(𝐿𝑥)
exponential decay. Such fitting provides access to the localization length, as shown in Eq. S4.

Fig. S6. a) Log-scale plots of  and b)  for the meta-NPG at E – EF = 0.4 eV and their fit to an 𝐺𝑦(𝐿𝑦) 𝐺𝑥(𝐿𝑥)
exponential decay. Such fitting provides access to the localization length, as shown in Eq. S4.

The fits for each NPG allow us to extract the corresponding localization length, , for each in-𝜉(𝐸)

plane direction. With that, in turn, one could calculate anisotropy as . Table S2 summarizes 
𝜉𝑦 𝜉𝑥

these results.

Table S2. Electric anisotropy at E – EF = 0.4 eV for each material under disorder as characterized by the 

ratio between localization lengths (  and ).𝜉𝑦 𝜉𝑥

NPG para-NPG meta-NPG*

 [nm]𝜉𝑦 903.5 328.4 18.9

 [nm]𝜉𝑥 226.9 43.6 0.6

𝐴=
𝜉𝑦

𝜉𝑥

4.0 7.5 31.4

Although the  value for meta-NPG may seem too low (as compared to the  estimation 
𝜉𝑦 𝜉𝑥 𝐴 ≈ ∞

in the main text), it is worth looking at the resulting effect on measurable transport. Using the 
same fits provided in Figs. S4-6, one may extrapolate the direction-dependent conductance for 
a given device length. Table S3 provides such extrapolated values for 100x100 nm2 devices 
composed of each NPG. As one may see, the apparently moderate difference in localization 
lengths for meta-NPG (Table S2) should lead to an extraordinary difference in measurable 
current for this particular device configuration, clearly supporting the statement that  in 𝐴 ≈ ∞
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this material. On the contrary, the other NPGs display much lower anisotropy values that are 
similar to those reported for well-known low-symmetry 2D materials.3

Table S3. Conductance values at E – EF = 0.4 eV for all materials under disorder for a 100x100 nm2 device 

( , ) extracted from their associated strong localization fit (eq. S4). See the legends in Figs. 𝐺100𝑛𝑚𝑦 𝐺100𝑛𝑚𝑥

S4-6 for each fitted equation per material. Anisotropy may then be calculated as the ratio between such 
direction-dependent conductance values.

NPG para-NPG meta-NPG

 [mS]𝐺100𝑛𝑚𝑦 0.22 0.09 0.00049

 [mS]𝐺100𝑛𝑚𝑥 0.15 0.01 2.0 · 10-74

𝐴=
𝐺100𝑛𝑚𝑦

𝐺100𝑛𝑚𝑥

1.44 7.76 2.48 · 1070

Section S3: Wave packet propagation lengths

In meta-NPG, the variability of saturation values for  between different puddle distributions is 𝐿𝑦

apparent for the first 5 ps both at E – EF = 0.4 eV (Fig. 3b in main text) and at E – EF = 0.7 eV (Fig. 
S7b) and is not present in the other NPGs (see Fig. S8), which highlights it as a consequence of 
the 1D transport present in meta-NPG. This may be understood by the fact that in NPG and para-
NPG transport is more spread through the entire 2D material, thus being more effectively 
randomized due to scattering with most of the puddles in the sample. Such situations will be 
less sensitive changes in the particular puddle distribution, and so all puddle distributions give 
rise to approximately the same wave-packet propagation length profiles (Fig. S8).

Fig. S7. Time evolution of wave packet propagation lengths for meta-NPG at E – EF = 0.7 eV for different 
puddle distributions (light curves) and their average (dark curves) along a) the perpendicular direction to 

GNRs ( ) and b) parallel to them ( ).𝐿𝑥 𝐿𝑦
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Fig. S8. Time evolution of wave-packet propagation lengths along GNRs ( ) at E – EF = 0.4 eV for a) NPG 𝐿𝑦

and b) para-NPG for different puddle distributions (light curves) and their average (dark curves). 

On the contrary, in meta-NPG transport is restricted within each GNR, which effectively blocks 
the randomization of the wave-packet by puddles placed at neighbouring GNRs or further away 
along the x-direction. As a consequence, overall transport is highly sensitive to the specific 
puddle distributions within each GNR, which makes the transport properties of the entire 2D 
material far more sensitive to variations in puddle distribution. This leads to different random 
distributions generating very different conductivity profiles along the GNRs, as may be seen in 

Fig. 3b in the main text (  at E – EF = 0.4 eV) and Fig. S7b (  at E – EF = 0.7 eV).𝐿𝑦 𝐿𝑦

Section S4: Effects of puddle concentration and shape

To qualitatively assess how puddle density affects the herein reported giant transport 
anisotropy of meta-NPG, one may take a look at the wave-packet propagation for varying puddle 
densities. We here consider 0.01% and 0.5%, with the intermediate density of 0.1% already 
shown in the main text. The first represents a ten-fold diluted situation as compared to our 
chosen puddle density (0.1%) whereas the second is five times more concentrated. More diluted 
puddle distributions (Fig. S9) lead to a slight increase of the wave-packet propagation across 

GNRs (  saturates to 6-7 nm), but they significantly improve transport along GNRs (  saturates 𝐿𝑥 𝐿𝑦

beyond 1400 nm). Therefore, such diluted disorder increases anisotropy for meta-NPG as 
compared to 0.1% puddle density. On the contrary, moving to much higher concentrations 
(0.5%) leads to a significant degradation of transport along the GNRs (Fig. S10) giving rise to a 

saturation length ( ) that approaches the scale of the GNR-width. Consequently, for such very 𝐿𝑦

disordered situations, giant transport anisotropy strongly decreases (not being giant anymore) 
– note though that in such scenarios the electrostatic potential of the material has lost entirely 
almost its underlying periodicity, as may be observed in the corresponding puddle electrostatic 
map shown in Fig. S10.

Similar to Fig. S9, soft puddles - capturing the electrostatic effect by underlying substrates such 
as SiO2

4,5 - increase anisotropy substantially (Fig. S11). This is because transport across GNRs is 
still limited to ca. 6 nm, whereas the wave-packet along GNRs is barely scattered by such soft 
electrostatic disorder, not becoming saturated even after some micrometers (see Fig. S11a).
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Fig. S9. Results for a puddle density of 0.01%. a) Puddle distribution map for one-fourth of the total area 
(300x300 nm2) of the meta-NPG sample (see square outline at bottom left). Bright and dark regions are 

associated to p-doping ( ) and n-doping ( ), respectively. Time evolution of wave-packet 𝜀𝑖> 0 𝜀𝑖< 0

propagation lengths b) across ( ) and c) along GNRs ( ) at E – EF = 0.4 eV for one puddle distribution. 𝐿𝑥 𝐿𝑦
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Fig. S10. Results for a puddle density of 0.5%. a) Puddle distribution map for one-fourth of the total area 
(300x300 nm2) of the meta-NPG sample (see square outline at bottom left). Bright and dark regions are 

associated to p-doping ( ) and n-doping ( ), respectively. Time evolution of wave-packet 𝜀𝑖> 0 𝜀𝑖< 0

propagation lengths b) across ( ) and c) along GNRs ( ) at E – EF = 0.4 eV for one puddle distribution.𝐿𝑥 𝐿𝑦
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Fig. S11. Results for a puddle density of 0.1% with β = 43.5 Å and Vj ranging from -0.028 and +0.028 
eV. These parameters closely resemble the effect of underlying substrates, such as SiO2.4,5 a) Puddle 
distribution map for one-fourth of the total area (300x300 nm2) of the meta-NPG sample (see square 

outline at bottom left). Bright and dark regions are associated to p-doping ( ) and n-doping ( ), 𝜀𝑖> 0 𝜀𝑖< 0

respectively. Time evolution of wave-packet propagation lengths b) across ( ) and c) along GNRs ( ) at 𝐿𝑥 𝐿𝑦

E – EF = 0.4 eV for one puddle distribution.
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