Electronic Supplementary Information

Phonon vortices at heavy impurities in two-dimensional materials

De-Liang Bao¹, Mingquan Xu², Ao-Wen Li², Gang Su^{2,3}, Wu Zhou², and Sokrates T. Pantelides^{1,4,*}

¹Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 39235, U.S.A. ²School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China

³Kavli Institute for Theoretical Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China ⁴Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, U.S.A.

Figure S1. Phonon vortex in Ge-C₃ -- one C atom is replaced by one Ge atom, *i.e.*, an impurity atom that is larger and heavier than Si. Calculations were performed in a 12×12 supercell as in Figure 1d for Si-C₃ because of the computational cost, but the presence of a vortex is clear.

a) In-plane and side view schematics of the Ge-C₃ defect showing that the Ge atom buckles by 2.2 Å off the graphene plane, compared with the 1.8-Å buckling by Si in Si-C₃. b) Atomic displacements around a Ge-C₃ defect at $\hbar w = 26$ meV showing clearly that Ge generates a larger vortex than Si, as illustrated by the red circle that goes through the Ge site which is much larger than the corresponding red circle of the Si-C₃-defect vortex in Fig. 1d. Another notable feature is that the atomic displacements of C atoms forming circles that are concentric with the red circle are pointing in the same direction, in contrast to the Si-C₃ defect, where the atomic displacements in the two red circles shown in Fig. 1 are in opposite directions. This feature is most likely related to the fact that the wavelength of the pristine-graphene mode that is in resonance with the Ge-C₃ vortex mode is much longer than in the case of the Si-C₃ vortex mode. Much larger computational supercells, perhaps even larger than 24×24 would be needed to explore these issues further with sufficient accuracy. Scale bar: 0.5 nm.