Supporting Information

Local Control of Au/MoS₂ Schottky Barrier by Top ZnO Nanowire Gate for High-

Performance Photodetection

Yu Xiao¹, Guisheng Zou¹, Jinpeng Huo¹, Tianming Sun^{1,2}, Jin Peng¹, Zehua Li¹, Daozhi Shen³,

Lei Liu^{1,*}

¹ Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory

for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of

PR China, Tsinghua University, Beijing 100084, P. R. China

² College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China

³ Institute for Quantum Computing, Department of Chemistry, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada

* Corresponding author. E-mail address: liulei@tsinghua.edu.cn

Table of Contents

I. Supplementary Figures
1. Detailed fabrication processes
2. The diameter of the left ZnO4
3. Detailed Raman test positions5
4. Comparison between the photodetecting areas and the device6
5. The supplementary photodetecting performances of Au-MoS ₂ Schottky junction7
6. The simulation of the distribution of light field near the nanowire13
7. The influence region of ZnO nanowire on left side14
8. The detailed transfer characteristics of the left NG15
II. Supplementary Table16

I. Supplementary Figures

1. Detailed fabrication processes

Figure S1. The fabrication process of the MoS_2 device with ZnO nanowire gates.

2. The diameter of the left ZnO

Figure S2. The diameter of the left ZnO in Figure 1b using AFM testing

3. Detailed Raman test positions

Figure S3. Detailed Raman test positions in the NG device. (a) An 1 um Raman spot is focused at eight locations in the red regions, and the right ZnO nanowire cross through the left four detection spots. (b) The eight results are the same, and no peaks of ZnO appear in the Raman tests.

4. Comparison between the photodetecting areas and the device

Figure S4. Photo-mapping of the Au-MoS₂ structure on both sides. (a) The normalized photodetecting intensity on the left side. (b) The corresponding optical image of Au-MoS₂ on the left side. (c) The normalized photodetecting intensity on the right side. (d) The corresponding optical image of Au-MoS₂ on the right side. Scale bar: 20 μ m.

5. The supplementary photodetecting performances of Au-MoS₂ Schottky junction

Figure S5. The photodetecting performances of Au-MoS₂ Schottky junction under a broadband halogen light.

Figure S6. The photodetecting performances of Au-MoS₂ Schottky junction under

on/off cycles of 5 mW/cm² halogen light.

Figure S7. I_{ds} - V_{ds} curves of the Au-MoS₂ Schottky junction when exposed to light at different wavelengths of 1 mW/cm² when no bias is applied to NG.

Figure S8. The response and recover speed of the Schottky photodetector.

Figure S9. Linearity of the device when the incident light has a wavelength of 490

nm, 525 nm and 625 nm.

Figure S10. Detectivity under different power density when no NG bias is applied.

6. The simulation of the distribution of light field near the nanowire

Figure S11. The simulation of the distribution of light field near the nanowire. (a) The basic model of the simulation. (b)-(f) The simulation of the distribution of light field when the incident light is 400 nm (b), 500 nm (c), 600 nm (d), 700 nm (e), 800 nm (f), respectively.

7. The influence region of ZnO nanowire on left side

Figure S12. The influence region of ZnO nanowire on left side deviates from the main photocurrent region.

8. The detailed transfer characteristics of the left NG

Figure S13. The detailed transfer characteristics of the left NG. (a) The gating effect is not as obvious on the right junction. (b) The red area in (a) is enlarged and the nanowire on the left can gate the left Schottky junction.

II. Supplementary Table

Schottky	Wavelen	Gate Type	V _{ds}	Responsivity	On/off	Detectivity	Ref
Туре	gth (nm)		(V)	(A/W)	Ratio	(Jones)	
Au/MoS ₂ /Au	525/625	nanowire gate (-20V)	1	1.3×10 ²	6×10 ³	1.4×10 ¹³	This work
Au/MoS ₂ /Au	445	-	10	0.05	-	1.55×10 ⁹	1
Au/MoS ₂ /Ti	1310	-	1	1.9	-	2.3×10 ¹¹	2
MoS ₂ /Pd	488	ion gate (0~-6 V)	1	0.24	1×10 ⁶	1.7×10 ¹¹	3
MoS ₂ /CNT	532	-	1	2.01×10 ³	-	3.2×10 ¹²	4
MoS ₂ /Cr	650	backgate (-60 V)	5	4.10×10 ³	1.6×10 ²	1.34×10 ¹³	5
2H-1T@2H MoS ₂	530	backgate (18 V)	20	1.92×10 ³	-	7.55×10 ¹¹	6
MoS ₂ / graphene	432	backgate (-3 V)	0.5	2.2×10 ⁵	4×10 ⁴	3.5×10 ¹³	7
MoS ₂ /TaIrTe	635	backgate. (-40 V)	1	0.89	1×10 ⁴	~9×10 ¹¹	8

Table1. Comparison of device performances of MoS_2 Schottky based photodetectors.

Reference

- Y. Xie, B. Zhang, S. Wang, D. Wang, A. Wang, Z. Wang, H. Yu, H. Zhang, Y. Chen, M. Zhao, B. Huang, L. Mei and J. Wang. Ultrabroadband MoS₂ Photodetector with Spectral Response from 445 to 2717 nm. *Adv Mater.* 2017, 29 (17), 1605972.
- Y. Mao, P. Xu, Q. Wu, J. Xiong, R. Peng, W. Huang, S. Chen, Z. Wu and C. Li. Self-Powered High-Detectivity Lateral MoS₂ Schottky Photodetectors for Near-Infrared Operation. *Adv. Electron. Mater.* 2021, 7 (3), 2001138.
- R. Chang, Q. Chen, W. Shen, Y. Zhang, B. Zhang and S. Wang. Controllable Switching between Highly Rectifying Schottky and p-n Junctions in an Ionic MoS₂ Device. *Adv. Funct. Mater.* 2023, *33* (30), 2301010.
- E.-X. Ding, P. Liu, H. H. Yoon, F. Ahmed, M. Du, A. M. Shafi, N. Mehmood, E. I. Kauppinen, Z. Sun and H. Lipsanen. Highly Sensitive MoS₂
 Photodetectors Enabled with a Dry-Transferred Transparent Carbon Nanotube Electrode. ACS Appl. Mater. Interfaces. 2023, 15 (3), 4216-4225.
- Y. Sun, L. Jiang, Z. Wang, Z. Hou, L. Dai, Y. Wang, J. Zhao, Y.-H. Xie, L. Zhao, Z. Jiang, W. Ren and G. Niu. Multiwavelength High-Detectivity MoS₂ Photodetectors with Schottky Contacts. *ACS Nano* 2022, *16* (12), 20272–20280.
- I. Lee, W. T. Kang, J. E. Kim, Y. R. Kim, U. Y. Won, Y. H. Lee and W. J. Yu. Photoinduced Tuning of Schottky Barrier Height in Graphene/MoS₂ Heterojunction for Ultrahigh Performance Short Channel Phototransistor. ACS Nano 2020, 14 (6), 7574-7580.
- W. Wang, X. Zeng, J. H. Warner, Z. Guo, Y. Hu, Y. Zeng, J. Lu, W. Jin, S. Wang, J. Lu, Y. Zeng and Y. Xiao. Photoresponse-Bias Modulation of a High-Performance MoS₂ Photodetector with a Unique Vertically Stacked 2H-MoS₂/1T@2H-MoS₂ Structure. *ACS Appl. Mater. Interfaces.* 2020, *12* (29), 33325-33335.
- L. Zhang, X. Han, S. Zhang, H. Wang, Y. Huang, Z. Zheng, N. Huo, W. Gao and J. Li. Gate-Tunable Photovoltaic Behavior and Polarized Image Sensor Based on All-2D TaIrTe₄/MoS₂ Van Der Waals Schottky Diode. *Adv. Electron. Mater.* 2022, 8 (11), 2200551.