Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

N-S Bond Cleavage of Tosyl Hydrazones by Dual Reactive Arynes: Synthesis of Diaryl Sulfones, Spiro[indazole-3,3'-indolin]-2'-one, and N-Phenyl benzenesulfonohydrazides

Suresh Snoxma Smile and Ponnusamy Shanmugam*

Organic and Bioorganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai-600020, India

Entry	Contents	Page No.
1	General Remarks	S-1
2	Experimental Procedures	
	Typical experimental procedure for the preparation of compounds 3 , 4 ,	
	and 5 .	S2
3	Spectroscopic data of synthesized new compounds	S3-S10
4	Copies of NMR and HRMS spectra	S11-S51
5	Crystal data of compound 3a	S52-S56
6	Crystal data of compound 4b	S57-S62
7	Crystal data of compound4f	S63-S68
8	Crystal data of compound 5a	S69-S78

1. General remarks

All the reactions were carried out in oven-dried glassware. Unless otherwise specified, all reactions were carried out under an atmosphere of argon. Commercial dry CH₃CN was stored under nitrogen over 4 Å molecular sieves. The symmetrical and unsymmetrical and hetaryne precursors were purchased from Sigma-Aldrich and used as received, without any further purification. Anhydrous CsF was dried and stored under a nitrogen atmosphere. Progress of reactions was monitored by Thin Layer Chromatography (TLC) using Merck pre-coated TLC plates (Merck 60 F254) and compounds were visualized with a UV light at 254 nm. Further visualization was achieved by staining with iodine. Purification of crude compounds were done by column chromatography using Silica gel (Mesh size 100-200).The NMR spectra were recorded on a Bruker-400 MHz NMR spectrometer (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR) with CDCl₃ or DMSO-d6 as the solvent and TMS as an internal reference. Integrals are in

accordance with assignments; Coupling constants (*J*) were reported in Hertz (Hz). All the reported 13 C spectra are proton-decoupled. Multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplets), dd (doublet of doublet), brs (broad singlet). The FTIR spectra were recorded on a Perkin-Elmer RX-IFT-IR by KBr Pellet technique and absorbencies are reported in cm⁻¹. The HRMS analyses were done on a Q-T Micro mass spectrometer. Yields refer to quantities obtained after chromatography.

2. Experimental Details

General experimental procedure for the preparation of compounds 3, 4, and 5

In a reaction tube charged with 4-methyl-N-methyl isatin-benzenesulfonohydrazide 1 (50 mg, 1.8 mmoles), dry acetonitrile (2 mL) under Ar atmosphere was added benzyne precursor 2-(trimethylsilyl) phenyl trifluoro methane sulfonate (3 equivalents, 0.100 mL) followed by 3 equivalents of CsF as fluoride source. The entire setup was kept in a preheated oil bat at 60°C. The progress of the reaction was monitored by TLC. After completion of the reaction (ca. 10 min.), the solvent was removed in vacuo. The resulted crude mixture was purified through a silica gel column chromatography using a gradient elution using hexane-EtOAc (up to 20%) to obtain pure compounds 3, 4, and 5 in excellent combined yield.

3. Spectroscopic data of synthesized compounds

1-Methyl-4-(phenylsulfonyl)benzene(3a)	
oso 3a	Nature: White powder; 19mg, yield:51%;
	R _f (25% EtOAc-Hexane):0.40
	FTIR (KBr) v _{max} : 3090, 3059, 2980, 2869, 1657, 1593, 1448, 1401,1307,
	1297, 1156, 1107, 998 cm ⁻¹ ;
	¹ H NMR (CDCl ₃ /TMS, 400 MHz,):δ 7.95 – 7.91 (m, 2H), 7.86 – 7.80 (m,
	2H), 7.56 – 7.46 (m, 3H), 7.32 –7.27 (m, 2H), 2.39 (s, 3H)
	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 144.2, 142.0, 138.7, 133.0, 129.9,
	129.2(2C), 127.7(2C), 127.5(2C), 21.6;
	HRMS-ESI : Calcd. for $C_{13}H_{13}O_2S[M+H]^+m/z$: 233.0636; Found 233.0641.
1-Bromo-3-tosyll	benzene(3b)

	Nature: Colourless liquid;26mg, yield: 46%;
	R _f (25% EtOAc-Hexane):0.40;
	FTIR (KBr) v _{max} : 3079, 3039, 2981, 2927, 1929, 1894,1702, 1662, 1592,
	1492, 1321, 1293, 1119, 1016, 958, 914 cm ⁻¹ ;
Br	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ 8.06 (t, $J = 1.8$ Hz, 1H), 7.88 – 7.80 (m,
	3H), 7.68 – 7.64 (m, 1H), 7.39 – 7.29 (m, 3H), 2.41 (s, 3H);
3h	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 144.7, 143.9, 1379, 136.1, 130.8,
0.0	130.4(2C), 130.1, 127.9(2C), 126.1, 123.2, 21.6;
	HRMS-ESI : Calcd. for $C_{13}H_{12}BrO_2S$ [M+H] ⁺ <i>m</i> / <i>z</i> : 312.9771; Found
	312.9741.
4-Methyl-1-tosylb	penzene (3c)
	Nature: White powder; 21mg, yield: 40%;
	R _f (25% EtOAc-Hexane):0.40;
	FTIR (KBr) v _{max} : 3300, 3043, 2954, 2924, 1596, 1493, 1451, 1379, 1320,
0,00	1152, 1103, 1073cm ⁻¹ ;
	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ^{1} H NMR (400 MHz, CDCl ₃) δ 7.85 –
	7.79 (m, 3H), 7.73 (ddd, <i>J</i> = 6.3, 1.7, 0.6 Hz, 1H), 7.36 (ddd, <i>J</i> = 4.6, 2.9, 1.1
3c	Hz, 1H), 7.30 – 7.25 (m, 3H), 2.38 (d, <i>J</i> = 3.4 Hz, 6H);
	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 144.1, 143.9, 141.8, 139.5, 139.1
	138.8, 133.8, 129.9, 129.1, 127.8, 127.6, 124.7, 21.6, 21.5;
	HRMS-ESI : Calcd. for $C_{14}H_{15}O_2S[M+H]^+m/z$: 247.0793; Found 247.0782.
3-Methoxy-1-tosy	lbenzene (3d)
	Nature: White powder: 23mg, yield: 41%;
	R _f (25% EtOAc-Hexane):0.40;
	FTIR (KBr) v _{max} : 3450, 3044, 2975, 2923, 2108, 1919, 1682, 1596, 1495,
MeO S	1456, 1319, 1298, 1182, 1107, 1021 cm ⁻¹ ;
U U	¹ H NMR (CDCl ₃ /TMS, 400 MHz,):87.88 – 7.83 (m, 2H), 7.82 – 7.77 (m,
	2H), 7.27 (d, <i>J</i> = 7.9 Hz, 2H), 6.97 – 6.92 (m, 2H), 3.83 (s, 3H), 2.38 (s, 3H);
3d	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 163.2, 143.7, 139.5, 133.6, 129.8(2C),
	129.7(2C), 127.4(2C), 114.5(2C), 55.6, 21.5;
	HRMS-ESI : Calcd. for C ₁₄ H ₁₅ O ₃ S[M+H] ⁺ <i>m</i> / <i>z</i> : 263.0742; Found 263.0732.

4-Methoxy-1-tosylbenzene (3e)		
	Nature: White powder: 25mg, yield:45%;	
	R f (25% EtOAc-Hexane):0.40;	
	FTIR (KBr) v _{max} : 3450, 3096, 2575, 2108, 2095, 1919, 1682, 1596, 1495,	
	1319, 1182, 1107, 1071, 1021 cm ⁻¹ ;	
O S O	¹ H NMR (CDCl ₃ /TMS, 400 MHz,):δ7.88 – 7.83 (m, 2H), 7.82 – 7.77 (m,	
MeO	2H), 7.27 (d, <i>J</i> = 7.9 Hz, 2H), 6.97 – 6.92 (m, 2H), 3.83 (s, 3H), 2.38 (s, 3H);	
30	¹³ C NMR (CDCl ₃ /TMS, 100 MHz):δ163.2, 143.7, 139.5, 133.6, 129.8(2C),	
<i>Se</i>	129.7(2C), 127.4(2C), 114.5(2C), 55.6, 21.5;	
	HRMS-ESI : Calcd. for $C_{14}H_{15}O_3S[M+H]^+m/z$: 263.0742; Found 263.0732.	
4,5-Dimethoxy-1-tosylbenzene (3f)		
	Nature: White solid: 22mg, yield:35%;	
	R f (25% EtOAc-Hexane):0.40;	
	FTIR (KBr) v _{max} : 3445, 3084, 3053, 2848, 1592, 1508, 1470, 1456, 1313,	
	1297, 1185, 1103, 1079, 1021 cm ⁻¹ ;	
Мео	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ 7.83 – 7.79 (m, 2H), 7.55 (dd, $J = 8.5$,	
ÓMe	2.2 Hz, 1H), 7.38 (d, <i>J</i> = 2.1 Hz, 1H), 7.30 – 7.26 (m, 2H), 6.92 (d, <i>J</i> = 8.5 Hz,	
3f	1H), 3.91 (d, <i>J</i> = 2.8 Hz, 6H), 2.39 (s, 3H);	
	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 152.9, 149.2, 143.8, 139.3, 133.5,	
	129.9(2C), 127.3(2C), 121.7(2C), 110.8, 109.8, 56.2, 56.1, 21.5;	
	HRMS-ESI : Calcd. for $C_{15}H_{16}O_4SNa$ [M+Na] ⁺ m/z : 315.0667; Found	
	315.0656.	
2-Tosylnaphthalene (3g)		
	Nature: White powder: 29mg, yield:48%;	
0,50	R f (25% EtOAc-Hexane):0.40;	
	FTIR (KBr) v _{max} : 3064, 2958, 2852, 1595, 1506, 1495, 1457, 1347, 1317,	
	1305, 1155, 1093 cm ⁻¹ ;	
3 g	¹ H NMR (CDCl ₃ /TMS, 400 MHz,):δ8.59 – 8.53 (m, 1H), 7.99 – 7.94 (m,	
	1H), $7.94 - 7.88$ (m, 2H), $7.88 - 7.82$ (m, 3H), $7.66 - 7.56$ (m, 2H), 7.29 (dd,	
	<i>J</i> = 8.5, 0.6 Hz, 2H), 2.38 (s, 3H);	
	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 144.2, 138.8, 138.7, 134.9, 132.3,	

	129.9(2C), 129.5, 129.4, 129.1(2C), 128.9, 127.9, 127.8, 127.6, 122.6, 21.6;
	HRMS-ESI : Calcd. for $C_{17}H_{14}O_2SNa \ [M+Na]^+m/z$: 305.0612; Found
	305.0603.
6-Tosyl-1H-indol	e (3h)
	Nature: Yellow powder: 25mg, yield:43%;
	R _f (25% EtOAc-Hexane):0.40;
	FTIR (KBr) v _{max} : 3316, 2958, 2921, 1597, 1496, 1349, 1327, 1279, 1146,
	1053, 1019, 972, 917cm ⁻¹ ;
O _S S ^O	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ 8.71 (s, 1H), 8.22 (d, $J = 1.6$ Hz, 1H),
	7.80 (dd, $J = 7.5$, 4.5 Hz, 1H), 7.76 (t, $J = 6.1$ Hz, 2H), 7.60 (dd, $J = 8.6$, 1.8
	Hz, 1H), 7.34 (d, $J = 8.6$ Hz, 1H), 7.26 – 7.21 (m, 1H), 7.19 – 7.13 (m, 3H),
3h	6.57 – 6.53 (m, 1H), 2.28 (s, 3H);
	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 143.4, 139.9, 137.9, 132.7, 129.6,
	127.5, 127.3, 126.8, 121.7, 121.2, 120.8, 118.9, 104.0, 102.1, 21.5;
	HRMS-ESI : Calcd. for $C_{15}H_{14}NO_2S[M+H]^+m/z$: 272.0745; Found 272.0733.
1'-Methylspiro[indazole-3,3'-indolin]-2'-one (4a)	
	Nature: White Solid: 12mg, yield:32%;
	R f (25% EtOAc-Hexane):0.40;
	FTIR (KBr) v _{max} : 3087, 3071, 2941, 2889, 1723, 1610, 1493, 1424, 1366,
	1303, 1252, 1125, 1085, 1062, 996, 930cm ⁻¹ ;
	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): $\delta 8.23$ (d, $J = 7.9$ Hz, 1H), 7.61 (td, $J =$
4a	7.8, 1.0 Hz, 1H), 7.47 (dtd, $J = 21.7$, 7.6, 1.0 Hz, 2H), 7.34 (d, $J = 7.5$ Hz,
	1H), 7.02 (ddd, <i>J</i> = 11.5, 8.4, 4.4 Hz, 2H), 6.58 – 6.49 (m, 1H), 3.37 (s, 3H);
	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 167.1, 160.2, 145.9, 137.9, 130.9,
	130.8, 130.1, 124.2, 123.5, 122.6, 122.0, 121.6, 109.2, 99.5, 27.4;
	HRMS-ESI : Calcd. for $C_{15}H_{12}N_3O[M+H]^+m/z$: 250.0980; Found 250.0991.
4-Bromo-1'-methylspiro[indazole-3,3'-indolin]-2'-one (4b)	
	Nature: White Solid:16mg, yield:27%;
	R f (25% EtOAc-Hexane):0.40;
	FTIR (KBr) v _{max} : 3451, 2922, 1722, 1611, 1583, 1492, 1449, 1363, 1344,
	1255, 1126, 1019, 950 cm ⁻¹ ;

N	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ 8.18 (dd, J = 7.8, 0.6 Hz, 1H), 7.60 (dd,	
Br	J = 7.9, 0.6 Hz, 1H), $7.53 - 7.44$ (m, 2H), $7.08 - 6.99$ (m, 2H), 6.57 (dd, $J =$	
N N	7.4, 0.6 Hz, 1H), 3.42 (s, 3H);	
4b	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 165.2, 160.2, 146.3, 138.5, 133.9,	
	131.9, 131.0, 124.1, 123.5, 120.9, 118.8, 117.5, 109.3, 101.1, 27.5;	
	HRMS-ESI : Calcd. for $C_{15}H_{11}BrN_3O[M+H]^+m/z$: 250.0980; Found 250.0991.	
4-Methoxy-1'-met	thylspiro[indazole-3,3'-indolin]-2'-one (4c)	
	Nature: White Solid: 16mg, yield:27%;	
	R f (25% EtOAc-Hexane):0.40;	
	FTIR (KBr) v _{max} : 3093, 3064, 3013, 2946, 1721, 1613, 1491, 1329, 1292,	
	1173, 1127, 1025, 992, 936 cm ⁻¹ ;	
	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ 7.73 (d, $J = 2.2$ Hz, 1H), 7.44 (td, $J =$	
MeO	7.8, 1.2 Hz, 1H), 7.21 (d, $J = 8.2$ Hz, 1H), 7.07 – 6.99 (m, 3H), 6.60 – 6.55	
N N	(m, 1H), 3.94 (s, 3H), 3.37 (s, 3H);	
4c	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 167.4, 161.9, 161.6, 145.9, 130.7,	
40	129.7, 124.3, 123.4, 122.9, 121.8, 118.3, 109.1(2C), 106.1, 55.9, 27.4;	
	HRMS-ESI : Calcd. for $C_{16}H_{14}N_3O_2[M+H]^+m/z$: 280.1086; Found 280.1080.	
1'-Allylspiro[indazole-3,3'-indolin]-2'-one (4d)		
	Nature: White Solid: 14mg, yield:26%;	
	R _f (25% EtOAc-Hexane):0.40;	
	FTIR (KBr) v _{max} : 3084, 3065, 3036, 2979, 1594, 1494, 1448, 1308, 1295,	
	1156, 1071, 1018, 998 cm ⁻¹ ;	
Ň	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ 8.17 (d, J = 7.9 Hz, 1H), 7.55 (td, J =	
	7.8, 1.0 Hz, 1H), 7.43 (td, <i>J</i> = 7.5, 0.9 Hz, 1H), 7.33 (td, <i>J</i> = 7.8, 1.2 Hz, 1H),	
	7.27 (d, $J = 7.4$ Hz, 1H), 6.94 (ddd, $J = 11.0$, 8.4, 4.4 Hz, 2H), 6.49 (dd, $J =$	
4d	7.4, 0.6 Hz, 1H), 5.87 (ddt, $J = 17.1$, 10.4, 5.2 Hz, 1H), 5.29 (ddd, $J = 13.7$,	
	11.2, 0.8 Hz, 2H), 4.41 (ddd, <i>J</i> = 5.4, 4.0, 1.7 Hz, 2H);	
	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 166.8, 160.2, 145.2, 138.1, 13.0, 130.7,	
	130.6, 130.0, 124.3, 123.5, 122.5, 122.1, 121.7, 118.2, 110.1, 99.4, 43.4;	
	MS-ESI : Calcd. for $C_{17}H_{14}N_3O[M+H]^+m/z$: 276.11; Found 276.21.	
Spiro[fluorene-9,	3'-indazole] (4e)	

	Nature: White Solid: 20mg, yield: 37%;
	R f (25% EtOAc-Hexane):0.40;
	FTIR (KBr) v _{max} : 3057, 3022, 2851, 1596, 1460,1285, 1263, 1175, 1152,
N N	1087, 953, 932, 873cm ⁻¹ ;
\bigcirc	¹ H NMR (CDCl ₃ /TMS, 400 MHz,):δ 8.17 (d, <i>J</i> = 7.9 Hz, 1H), 7.78 (d, <i>J</i> = 7.6
4e	Hz, 2H), 7.50 (td, $J = 7.9$, 1.0 Hz, 1H), 7.35 (dtd, $J = 8.3$, 7.5, 0.9 Hz, 3H),
	7.09 (td, $J = 7.5$, 1.0 Hz, 2H), 7.03 (d, $J = 7.4$ Hz, 1H), 6.48 (d, $J = 7.6$ Hz,
	2H);
	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 159.2, 143.4, 140.6, 138.1, 130.7,
	129.6, 129.4, 128.2, 123.8, 122.6, 121.4, 120.7, 103.2;
	HRMS-ESI : Calcd. for $C_{19}H_{13}N_2[M+H]^+m/z$: 269.1079; Found 269.1074.
4'-Methoxyspiro[j	fluorene-9,3'-indazole] (4f)
	Nature: White Solid: 23mg, yield:38%;
	R f (25% EtOAc-Hexane):0.40;
	FTIR (KBr) v _{max} : 3050, 2925, 2853, 1606, 1495, 1467, 1276, 1213, 1077,
	993, 946, 860, 844 cm ⁻¹ ;
N N	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ 7.77 (d, J = 7.7 Hz, 3H), 7.48 (t, J = 8.0
MeO	Hz, 1H), 7.35 (td, J = 7.5, 1.0 Hz, 2H), 7.08 (td, J = 7.5, 1.0 Hz, 2H), 6.82 (d,
	<i>J</i> = 8.1 Hz, 1H), 6.51 (d, <i>J</i> = 7.6 Hz, 2H), 3.35 (s, 3H);
41	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 161.1, 155.4, 143.5, 136.9, 131.5,
	129.3(2C), 127.8(2C), 126.9, 123.3(2C), 120.6, 113.6, 113.2, 102.7, 55.9;
	HRMS-ESI : Calcd. for $C_{20}H_{15}N_2O[M+H]^+m/z$: 299.1184; Found 299.1194.
3-Diazo-1-methyl	indolin-2-one(4g)
	Nature: Orange Crystal: 11mg, yield:29%;
	R f (25% EtOAc-Hexane):0.40;
N-	FTIR (KBr) v _{max} : 2954, 2853, 2109, 2097, 1687, 1671, 1468, 1420, 1371,
	1314, 1123, 1096, 1019 cm ⁻¹ ;
N	¹ H NMR (CDCl ₃ /TMS, 400 MHz,):δ 7.20 (ddt, <i>J</i> = 8.2, 3.0, 1.2 Hz, 2H), 7.12
4g	- 7.07 (m, 1H), 6.94 - 6.90 (m, 1H), 3.33 (s, 3H);
	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 166.9, 134.5, 125.5(2C), 122.1, 118.2,
	116.7, 108.6, 26.8;

	HRMS-ESI : Calcd. for C ₉ H ₈ N ₃ O $[M+H]^+m/z$: 174.0667; Found 174.0675.
(E)-4-Methyl-N'-((1-methyl-2-oxoindolin-3-ylidene)-N-phenylbenzenesulfonohydrazide (5a)
	Nature: Yellow solid:9mg, yield:13%;
	R _f (25% EtOAc-Hexane):0.40;
	FTIR (KBr) v _{max} : 2923, 2852, 1734, 1606, 1486, 1372, 1358, 1186, 1170,
	1088, 973, 888 cm ⁻¹ ;
	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ 7.60 (d, $J = 8.3$ Hz, 2H), 7.30 (td, $J =$
l	7.8, 1.1 Hz, 1H), 7.25 – 7.22 (m, 5H), 7.17 (dd, <i>J</i> = 7.4, 2.5 Hz, 2H), 6.83 (t, <i>J</i>
5a	= 7.7 Hz, 1H), 6.73 (d, J = 7.9 Hz, 1H), 3.21 (s, 3H), 2.40 (s, 3H);
	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 144.8, 133.8, 129.9(2C), 129.1,
	128.9(2C), 128.5(2C), 128.0(2C), 125.8(2C), 122.8, 108.8, 26.9, 21.7;
	HRMS-ESI : Calcd. for $C_{22}H_{19}N_3O_3SNa$ [M+Na] ⁺ m/z: 428.1045; Found
	428.1043.
(E)-N-(2-Bromop	henyl)-4-methyl-N'-(1-methyl-2-oxoindolin-3-ylidene)benzenesulfonohydrazide
(5b)	
	Nature: Orange solid: 16mg, yield:18%;
	R f (25% EtOAc-Hexane):0.40;
	FTIR (KBr) v _{max} : 3449, 3090, 3064, 2928, 1736, 1610, 1570, 1418, 1369,
	1171, 1105, 1067, 966, 922, 884, 815cm ⁻¹ ;
Br	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ 7.60 (dd, $J = 7.7, 0.7$ Hz, 1H), 7.57 –
	7.53 (m, 2H), 7.40 – 7.34 (m, 2H), 7.32 (t, $J = 1.9$ Hz, 1H), 7.27 – 7.25 (m,
T I	2H), 7.22 (ddd, <i>J</i> = 8.2, 2.1, 1.1 Hz, 1H), 7.12 (t, <i>J</i> = 8.0 Hz, 1H), 6.95 (td, <i>J</i> =
5b	7.7, 0.9 Hz, 1H), 6.78 (d, <i>J</i> = 7.8 Hz, 1H), 3.22 (s, 3H), 2.42 (s, 3H);
	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 162.9, 154.8, 147.1, 145.2, 143.0,
	134.6, 130.9, 130.3, 129.9, 129.8(2C), 129.3(2C), 128.9, 128.2, 124.2, 123.1,
	122.1, 115.1, 108.9, 26.2, 21.7;
	HRMS-ESI : Calcd. for $C_{22}H_{18}BrN_3O_3SNa \ [M+Na]^+m/z$: 506.0150;Found
	506.0148.
(E)-4-Methyl-N'-(1-methyl-2-oxoindolin-3-ylidene)-N-(p-tolyl)benzenesulfonohydrazide (5c)
	Nature: Yellow solid: 10mg, yield:11%;
	R _f (25% EtOAc-Hexane):0.40;

	FTIR (KBr) v _{max} : 3059, 2920, 2851, 1719, 1635, 1490, 1345, 1270, 1123,	
	1017, 986, 932, 883, 816cm ⁻¹ ;	
	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ 8.09 (d, $J = 8.1$ Hz, 1H), 8.05 - 8.02	
	(m, 1H), 7.47 – 7.38 (m, 3H), 7.33 – 7.29 (m, 1H), 7.21 (d, J = 7.6 Hz, 1H),	
	7.15 - 7.13 (m, 1H), $7.06 - 6.98$ (m, 4H), $6.59 - 6.53$ (m, 2H), 3.38 (d, $J = 1.3$	
	Hz, 6H), 2.54 (s, 3H);	
5c	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 167.4, 160.9, 158.6, 145.9, 141.9,	
	140.6, 138.4, 135.1, 130.7(2C), 124.2, 124.1, 123.4, 123.2(2C), 122.3, 122.2,	
	121.6, 109.1(2C), 27.3, 21.6, 21.5;	
	MS-ESI : Calcd. for $C_{22}H_{22}N_3O_3S[M+H]^+m/z$: 420.13; Found 420.05.	
(E)-N-(3,4-Dimet	hoxyphenyl)-4-methyl-N'-(1-methyl-2-oxoindolin-3ylidene)benzene	
sulfonohydrazide	(5d)	
	Nature: Yellow solid: 12mg, yield:12%;	
	R _f (25% EtOAc-Hexane):0.40;	
	FTIR (KBr) v _{max} : 2955, 2853, 1738, 1610, 1511, 1469, 1369, 1264, 1170,	
	1023, 941, 868, 815 cm ⁻¹ ;	
OMe	¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ 7.65 (d, $J = 8.3$ Hz, 2H), 7.34 – 7.28 (m,	
(2) N-N	2H), 7.25 (s, 1H), 6.85 (t, $J = 7.8$ Hz, 1H), 6.76 – 6.67 (m, 3H), 6.62 (d, $J =$	
N O O'O'O	2.3 Hz, 1H), 3.84 (s, 3H), 3.66 (s, 3H), 3.21 (s, 3H), 2.41 (s, 3H);	
	¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 163.3, 148.8, 146.7, 144.7, 134.6,	
5d	133.7, 130.9(2C), 130.0(2C), 129.1, 128.6, 122.8, 118.8, 115.1, 110.3(2C),	
	109.6(2C), 108.6, 56.1, 55.9, 26.2, 21.6;	
	HRMS-ESI: Calcd. for C ₂₄ H ₂₃ N ₃ O ₅ SNa [M+Na] ⁺ m/z: 488.1256; Found	
	488.1253.	
(E)-N'-(1-Allyl-2-	(E)-N'-(1-Allyl-2-oxoindolin-3-ylidene)-4-methyl-N-phenylbenzenesulfonohydrazide (5e)	
	Nature: Yellow Solid: 11mg, yield: 13%;	
	R _f (25% EtOAc-Hexane):0.40;	
	FTIR (KBr) v _{max} : 2959, 2924, 2853, 1731, 1607, 1469, 1362, 1172, 1089,	
	1022, 884cm ⁻¹ ;	
	¹ H NMR (CDCl ₃ /TMS, 400 MHz,):δ 7.55 – 7.52 (m, 2H), 7.19 – 7.15 (m,	
	6H), 7.13 – 7.09 (m, 2H), 6.74 (td, J = 7.7, 1.0 Hz, 1H), 6.67 (d, J = 7.7 Hz,	

1H), $5.79 - 5.68$ (m, 1H), $5.22 - 5.14$ (m, 2H), 4.27 (dt, $J = 5.4$, 1.6 Hz, 2H),	
2.34 (s, 3H);	
¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 146.1, 144.8, 141.8, 133.7, 130.9,	
130.8(2C), 129.9(2C), 129.1(2C), 128.9(2C), 128.6(2C), 128.1, 125.8(2C),	
122.7, 118.3, 115.1, 109.5, 42.5, 21.7;	
MS-ESI : Calcd. for $C_{24}H_{22}N_3O_3S[M+H]^+m/z$: 432.13; Found 432.21.	
N'-(9H-Fluoren-9-ylidene)-4-methyl-N-phenylbenzenesulfonohydrazide (5f)	
Nature: Yellow solid: 10mg, yield: 12%;	
R f (25% EtOAc-Hexane):0.40;	
FTIR (KBr) v _{max} : 3331, 2953, 1715, 1609, 1489, 1355, 1215, 1187, 1090, 982,	
916, 883, 814cm ⁻¹ ;	
¹ H NMR (CDCl ₃ /TMS, 400 MHz,): δ 8.18 (d, J = 7.7 Hz, 1H), 7.76 (dd, J =	
7.9, 3.9 Hz, 1H), $7.47 - 7.42$ (m, 4H), 7.34 (td, $J = 7.5$, 1.0 Hz, 1H), 7.28 (td,	
<i>J</i> = 7.5, 0.9 Hz, 1H), 7.22 (ddd, <i>J</i> = 8.4, 3.5, 1.7 Hz, 3H), 7.16 (dd, <i>J</i> = 8.4, 4.5	
Hz, 3H), 7.14 – 7.07 (m, 3H), 2.36 (s, 3H);	
¹³ C NMR (CDCl ₃ /TMS, 100 MHz): δ 166.8, 144.3, 413.2, 143.1, 141.8,	
136.6, 132.5, 133.0, 130.9, 130.1, 129.9, 129.8(2C), 128.7, 128.5(2C),	
128.2(2C), 127.0(2C), 124.9, 123.2(2C), 119.9, 119.8, 21.7;	
HRMS-ESI : Calcd. for $C_{26}H_{20}N_2O_2SNa$ [M+Na] ⁺ <i>m</i> / <i>z</i> :447.1143; Found	
447.1143.	

4. Copies of NMR and HRMS Spectra

Figure 2.13C NMR spectrum of compound 3a

Figure 3.DEPT135 NMR spectrum of compound 3a

Figure 5.1H NMR spectrum of compound 3b

Figure 6.13C NMR spectrum of compound 3b

Figure 7.DEPT135 NMR spectrum of compound 3b

Figure 8.HRMS spectrum of compound 3b

Figure 9.1H NMR spectrum of compound 3c

Figure 10.13C NMR spectrum of compound 3c

Figure 11.DEPT135 NMR spectrum of compound 3c

Figure 12. HRMS spectrum of compound 3c

Figure 13.1H NMR spectrum of compound 3d

Figure 14.13C NMR spectrum of compound 3d

Figure 15.DEPT135 NMR spectrum of compound 3d

Figure 16.HRMS spectrum of compound 3d

Figure 17.¹H NMR spectrum of compound 3e

Figure 18.13C NMR spectrum of compound 3e

Figure 19.DEPT-135 NMR spectrum of compound 3e

Figure 20.HRMS spectrum of compound 3e

S20

Figure 21.1H NMR spectrum of compound 3f

Figure 22.13C NMR spectrum of compound 3f

Figure 23.DEPT135 NMR spectrum of compound 3f

Figure 24.HRMS spectrum of compound 3f

Figure 25.1H NMR spectrum of compound 3g

Figure 26.13C NMR spectrum of compound 3g

Figure 27.DEPT135 NMR spectrum of compound 3g

Figure 28.HRMS spectrum of compound 3g

Figure 29.1H NMR spectrum of compound 3h

Figure 30.13C NMR spectrum of compound 3h

Figure 31.DEPT135 NMR spectrum of compound 3h

Figure 33.1H NMR spectrum of compound 4a

Figure 34.13C NMR spectrum of compound 4a

Figure 36.HRMS spectrum of compound 4a

Figure 37.1H NMR spectrum of compound 4b

Figure 38.13C NMR spectrum of compound 4b

Figure 39.DEPT-135 NMR spectrum of compound 4b

Figure 40.HRMS spectrum of compound 4b

Figure 41.¹H NMR spectrum of compound 4c

Figure 42.13C NMR spectrum of compound 4c

Figure 43.DEPT135 NMR spectrum of compound 4c

Figure 44.HRMS spectrum of compound 4c

Figure 46.13C NMR spectrum of compound 4d

Figure 47.DEPT135 NMR spectrum of compound 4d

Figure 49.¹H NMR spectrum of compound 4e

Figure 50.13C NMR spectrum of compound 4e

Figure 51.DEPT135 NMR spectrum of compound 4e

Figure 52.HRMS spectrum of compound 4e

Figure 53.¹H NMR spectrum of compound 4f

Figure 54.13C NMR spectrum of compound 4f

Figure 55.DEPT135 NMR spectrum of compound 4f

Figure 56.HRMS spectrum of compound 4f

Figure 57.1H NMR spectrum of compound 4g

Figure 58.13C NMR spectrum of compound 4g

Figure 59.DEPT135 NMR spectrum of compound 4g

Figure 60.HRMS spectrum of compound 4g

Figure 61.¹H NMR spectrum of compound 5a

Figure 62.13C NMR spectrum of compound 5a

Figure 63.DEPT135 NMR spectrum of compound 5a

Figure 64.HRMS spectrum of compound 5a

Figure 65.¹H NMR spectrum of compound 5b

Figure 66.13C NMR spectrum of compound 5b

Figure 67.DEPT135 NMR spectrum of compound 5b

Figure 68.HRMS spectrum of compound 5b

Figure 69.¹H NMR spectrum of compound 5c

Figure 70.13C NMR spectrum of compound 5c

Figure 71.DEPT135 NMR spectrum of compound 5c

Figure 73.1H NMR spectrum of compound 5d

Figure 74.13C NMR spectrum of compound 5d

Figure 75.DEPT135 NMR spectrum of compound 5d

Figure 76.HRMS spectrum of compound 5d

Figure 77.¹H NMR spectrum of compound 5e

Figure 78.13C NMR spectrum of compound 5e

Figure 79.DEPT135 NMR spectrum of compound 5e

Figure 81.¹H NMR spectrum of compound5f

Figure 82.13C NMR spectrum of compound 5f

Figure 83.DEPT135 NMR spectrum of compound 5f

Figure 84.HRMS spectrum of compound 5f

ORTEP diagram of compounds 3a (CCDC-2179829)

Table 1. Sample and crystal data for 3a.		
Identification code	3a	
Chemical formula	$C_{13}H_{12}O_2S$	
Formula weight	232.29 g/mol	
Temperature	300(2) K	
Wavelength	0.71073 Å	
Crystal size	0.050 x 0.140 x 0.180 mm	
Crystal system	monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 13.0543(13) Å	$\alpha = 90^{\circ}$
	b = 7.8336(8) Å	$\beta = 95.968(3)^{\circ}$
	c = 11.5876(12) Å	$\gamma=90^{\circ}$
Volume	1178.6(2) Å ³	
Z	4	
Density (calculated)	1.309 g/cm ³	
Absorption coefficient	0.256 mm ⁻¹	
F(000)	488	

 Table 2. Data collection and structure refinement for 3a.

Theta range for data collection	3.04 to 28.36°		
Index ranges	-17<=h<=17, -10<=k<=10, -15<=l<=15		
Reflections collected	26064		
Independent reflections	2939 [R(int) = 0	.0500]	
Max. and min. transmission	0.7457 and 0.6516		
Structure solution technique	direct methods		
Structure solution program	n SHELXT 2018/2 (Sheldrick, 2018)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2018/	3 (Sheldrick, 2018)	
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$		
Data / restraints / parameters	2939 / 0 / 146		
Goodness-of-fit on F ²	1.039		
Final R indices	1916 data; Ι>2σ(Ι)	R1 = 0.0524, wR2 = 0.0991	
	all data	R1 = 0.0918, wR2 = 0.1198	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0293P) ² +0.7008P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	0.260 and -0.299 eÅ ⁻³		
R.M.S. deviation from mean	0.038 eÅ ⁻³		

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters $({\rm \AA}^2)$ for 3a.

	x/a	y/b	z/c	U(eq)
S2	0.27013(4)	0.33249(8)	0.68056(5)	0.0618(2)
O2	0.26997(14)	0.3924(3)	0.79781(14)	0.0882(6)
03	0.22698(13)	0.1681(2)	0.6495(2)	0.0929(7)

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.47206(17)	0.4222(3)	0.71525(19)	0.0569(6)
C2	0.57291(18)	0.4185(3)	0.6904(2)	0.0663(6)
C3	0.59901(18)	0.3292(3)	0.5966(2)	0.0640(6)
C4	0.5255(2)	0.2432(3)	0.5269(2)	0.0683(7)
C5	0.42445(18)	0.2435(3)	0.55074(19)	0.0604(6)
C6	0.20643(15)	0.4849(3)	0.58732(18)	0.0490(5)
C7	0.15909(18)	0.4370(3)	0.4805(2)	0.0654(6)
C8	0.10905(19)	0.5589(4)	0.4093(2)	0.0726(7)
C9	0.10575(16)	0.7271(3)	0.4420(2)	0.0617(6)
C10	0.15569(18)	0.7731(3)	0.5483(2)	0.0651(6)
C11	0.20576(17)	0.6536(3)	0.62077(19)	0.0587(6)
C12	0.0487(2)	0.8585(4)	0.3647(3)	0.0944(10)
C14	0.39851(15)	0.3330(2)	0.64603(17)	0.0450(5)

Table 4. Bond lengths (\AA) for 3a.

S2-O3	1.4361(19)	S2-O2	1.4376(19)
S2-C6	1.760(2)	S2-C14	1.763(2)
C1-C14	1.376(3)	C1-C2	1.377(3)
C2-C3	1.365(3)	C3-C4	1.366(3)
C4-C5	1.376(3)	C5-C14	1.380(3)
C6-C7	1.377(3)	C6-C11	1.378(3)
C7-C8	1.381(3)	C8-C9	1.373(4)
C9-C10	1.380(3)	C9-C12	1.509(3)
C10-C11	1.376(3)		

Table 5. Bond angles (°) for 3a.

O3-S2-O2	119.36(13)	O3-S2-C6	107.84(11)
O2-S2-C6	108.16(11)	O3-S2-C14	107.62(11)
O2-S2-C14	107.98(10)	C6-S2-C14	105.00(9)
C14-C1-C2	119.5(2)	C3-C2-C1	120.0(2)
C2-C3-C4	120.4(2)	C3-C4-C5	120.7(2)
C4-C5-C14	118.8(2)	C7-C6-C11	119.9(2)
C7-C6-S2	120.43(18)	C11-C6-S2	119.64(17)
C6-C7-C8	119.3(2)	C9-C8-C7	121.7(2)
C8-C9-C10	118.1(2)	C8-C9-C12	121.3(3)
C10-C9-C12	120.6(3)	C11-C10-C9	121.1(2)
C10-C11-C6	119.8(2)	C1-C14-C5	120.7(2)
C1-C14-S2	119.41(16)	C5-C14-S2	119.91(16)

Table 6. Anisotropic atomic displacement parameters $({\rm \AA}^2)$ for 3a.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U11	U22	U33	U23	U13	U12
S2	0.0514(3)	0.0653(4)	0.0694(4)	0.0198(3)	0.0100(3)	0.0037(3)
02	0.0790(12)	0.1337(17)	0.0552(10)	0.0260(11)	0.0221(9)	0.0295(12)
03	0.0608(10)	0.0601(11)	0.1563(19)	0.0330(12)	0.0045(11)	-0.0117(9)
C1	0.0625(14)	0.0525(13)	0.0549(13)	-0.0083(10)	0.0015(10)	0.0043(11)
C2	0.0577(14)	0.0582(15)	0.0810(17)	-0.0028(13)	-0.0026(12)	-0.0066(11)
C3	0.0526(13)	0.0678(16)	0.0734(16)	0.0161(13)	0.0154(11)	0.0029(12)
C4	0.0763(17)	0.0788(18)	0.0519(14)	-0.0026(12)	0.0161(12)	0.0140(14)
C5	0.0648(14)	0.0621(15)	0.0521(13)	-0.0067(11)	-0.0044(11)	0.0015(11)
C6	0.0417(10)	0.0532(13)	0.0522(12)	0.0017(10)	0.0055(9)	0.0015(9)
C7	0.0648(14)	0.0575(14)	0.0717(16)	-0.0080(12)	-0.0036(12)	-0.0031(12)
C8	0.0624(15)	0.089(2)	0.0626(15)	-0.0014(14)	-0.0110(12)	-0.0014(14)
C9	0.0420(11)	0.0789(17)	0.0657(15)	0.0175(13)	0.0120(10)	0.0099(11)

	U11	U22	U 33	U23	U13	U12
C10	0.0649(14)	0.0536(14)	0.0781(17)	-0.0009(12)	0.0138(12)	0.0118(12)
C11	0.0582(13)	0.0645(15)	0.0529(13)	-0.0080(11)	0.0027(10)	0.0056(11)
C12	0.0670(16)	0.118(3)	0.100(2)	0.0490(19)	0.0189(15)	0.0313(17)
C14	0.0486(11)	0.0417(11)	0.0443(11)	0.0061(9)	0.0029(8)	0.0027(9)

Table 7. Hydrogen atomic coordinates and isotropic atomic displacement parameters (\AA^2) for 3a.

	x/a	y/b	z/c	U(eq)
H1	0.4538	0.4845	0.7783	0.068000
H2	0.6233	0.4768	0.7375	0.080000
Н3	0.6672	0.3268	0.5801	0.077000
H4	0.5440	0.1839	0.4627	0.082000
Н5	0.3745	0.1844	0.5035	0.072000
H7	0.1608	0.3238	0.4565	0.078000
H8	0.0767	0.5262	0.3374	0.087000
H10	0.1555	0.8868	0.5714	0.078000
H11	0.2391	0.6867	0.6921	0.070000
H12A	0.0864	0.9639	0.3696	0.142000
H12B	-0.0184	0.8767	0.3895	0.142000
H12C	0.0417	0.8185	0.2860	0.142000

Symmetry transformations used to generate equivalent atoms:

compound 4b

ORTEP	diagram	of compo	unds 4b	(CCDC-	-2179825)
	0	1		\ \	/

Table 1. Sample and crystal data for 4b.

Identification code	4b	
Chemical formula	$C_{15}H_{10}BrN_3O$	
Formula weight	328.17 g/mol	
Temperature	300(2) K	
Wavelength	0.71073 Å	
Crystal size	0.070 x 0.110 x 0.150 mm	
Crystal system	monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 12.2098(8) Å	$\alpha = 90^{\circ}$
	b = 8.7386(6) Å	$\beta = 108.433(2)^{\circ}$
	c = 13.4142(9) Å	$\gamma = 90^{\circ}$
Volume	1357.82(16) Å ³	
Z	4	
Density (calculated)	1.605 g/cm ³	
Absorption coefficient	3.025 mm ⁻¹	
F(000)	656	

Table 2. Data collection and structure refinement for 4b.

Theta range for data collection	1.97 to 27.12°
Index ranges	-15<=h<=14, -11<=k<=11, -14<=l<=17
Reflections collected	23806
Independent reflections	2977 [R(int) = 0.0518]

Max. and min. transmission	0.8160 and 0.6600			
Structure solution technique	direct methods	direct methods		
Structure solution program	SHELXT 2018/2 (She	SHELXT 2018/2 (Sheldrick, 2018)		
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2018/3 (Sh	SHELXL-2018/3 (Sheldrick, 2018)		
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	2977 / 0 / 182			
Goodness-of-fit on F ²	1.021	1.021		
Δ/σ_{max}	0.001			
Final R indices	2025 data; I>2σ(I)	R1 = 0.0453, wR2 = 0.1039		
	all data	R1 = 0.0810, $wR2 = 0.1172$		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0591 where P=(F_o^2 +2 F_c^2)/3	w=1/[$\sigma^2(F_o^2)$ +(0.0591P) ² +0.4927P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	$0.651 \text{ and } -0.441 \text{ e}\text{\AA}^{-3}$	0.651 and -0.441 eÅ ⁻³		
R.M.S. deviation from mean	0.071 eÅ ⁻³			

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for 4b. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)	
Br1	0.71105(3)	0.51711(4)	0.41938(3)	0.06601(19)	
01	0.6294(2)	0.2080(3)	0.1790(2)	0.0694(7)	
N1	0.3833(2)	0.2922(3)	0.1584(2)	0.0547(7)	
N2	0.3503(2)	0.2141(3)	0.2224(2)	0.0568(7)	
N3	0.6232(2)	0.4610(3)	0.1321(2)	0.0515(7)	
C1	0.5107(2)	0.3401(3)	0.3273(2)	0.0411(7)	
C2	0.4244(3)	0.2369(3)	0.3271(2)	0.0484(8)	
C3	0.4163(3)	0.1734(4)	0.4183(3)	0.0649(10)	
C4	0.4993(3)	0.2153(6)	0.5109(3)	0.0712(12)	

	x/a	y/b	z/c	U(eq)
C5	0.5878(3)	0.3159(4)	0.5121(3)	0.0626(9)
C6	0.5923(3)	0.3793(3)	0.4196(2)	0.0464(7)
C7	0.4899(2)	0.3838(4)	0.2155(2)	0.0436(7)
C8	0.4760(3)	0.5508(4)	0.1872(2)	0.0428(7)
C9	0.5901(3)	0.3347(4)	0.1738(2)	0.0487(8)
C10	0.5568(3)	0.5904(4)	0.1397(2)	0.0477(8)
C11	0.5662(3)	0.7381(4)	0.1079(3)	0.0643(10)
C12	0.4918(4)	0.8459(4)	0.1265(3)	0.0787(12)
C13	0.4116(4)	0.8071(4)	0.1737(3)	0.0704(11)
C14	0.4026(3)	0.6586(4)	0.2048(3)	0.0568(9)
C15	0.7229(4)	0.4646(5)	0.0961(3)	0.0736(11)

Table 4. Bond lengths (Å) for 4b.

Br1-C6	1.886(3)	O1-C9	1.199(4)
N1-N2	1.259(3)	N1-C7	1.513(4)
N2-C2	1.423(4)	N3-C9	1.356(4)
N3-C10	1.413(4)	N3-C15	1.445(4)
C1-C6	1.365(4)	C1-C2	1.387(4)
C1-C7	1.489(4)	C2-C3	1.375(4)
C3-C4	1.381(5)	C4-C5	1.389(5)
C5-C6	1.376(4)	C7-C8	1.504(4)

C7-C9	1.558(4)	C8-C14	1.371(4)
C8-C10	1.378(4)	C10-C11	1.375(5)
C11-C12	1.385(6)	C12-C13	1.366(6)
C13-C14	1.378(5)		

Table 5. Bond angles (°) for 4b.

N2-N1-C7	110.5(2)	N1-N2-C2	110.9(2)
C9-N3-C10	111.7(3)	C9-N3-C15	123.2(3)
C10-N3-C15	124.7(3)	C6-C1-C2	120.1(3)
C6-C1-C7	133.8(3)	C2-C1-C7	106.1(3)
C3-C2-C1	121.9(3)	C3-C2-N2	128.3(3)
C1-C2-N2	109.8(3)	C2-C3-C4	117.0(3)
C3-C4-C5	121.7(3)	C6-C5-C4	119.8(3)
C1-C6-C5	119.4(3)	C1-C6-Br1	120.0(2)
C5-C6-Br1	120.6(3)	C1-C7-C8	118.2(2)
C1-C7-N1	102.7(2)	C8-C7-N1	112.1(2)
C1-C7-C9	112.8(3)	C8-C7-C9	102.4(2)
N1-C7-C9	108.6(2)	C14-C8-C10	120.7(3)
C14-C8-C7	130.6(3)	C10-C8-C7	108.7(3)
O1-C9-N3	127.6(3)	01-C9-C7	125.3(3)
N3-C9-C7	107.1(3)	C11-C10-C8	121.4(3)
C11-C10-N3	128.5(3)	C8-C10-N3	110.1(3)
C10-C11-C12	117.3(4)	C13-C12-C11	121.4(4)
C12-C13-C14	120.8(4)	C8-C14-C13	118.4(3)

Table 6. Anisotropic atomic displacement parameters $({\rm \AA}^2)$ for 4b.

	U11	U22	U33	U ₂₃	U13	U12
Br1	0.0444(2)	0.0652(3)	0.0784(3)	-0.01519(17)	0.0050(2)	-0.00667(15)
01	0.0804(18)	0.0526(15)	0.0871(19)	-0.0042(13)	0.0434(15)	0.0084(13)
N1	0.0492(16)	0.0686(18)	0.0424(16)	-0.0030(14)	0.0091(13)	-0.0145(14)
N2	0.0498(16)	0.0680(18)	0.0502(18)	0.0028(14)	0.0123(14)	-0.0160(14)
N3	0.0501(17)	0.0585(17)	0.0544(17)	-0.0051(13)	0.0287(14)	-0.0071(13)
C1	0.0379(16)	0.0478(17)	0.0384(17)	0.0011(13)	0.0130(14)	0.0031(13)
C2	0.0416(17)	0.0559(19)	0.048(2)	0.0049(15)	0.0150(15)	-0.0022(14)
C3	0.059(2)	0.077(3)	0.061(2)	0.0225(19)	0.022(2)	-0.0030(18)
C4	0.078(3)	0.093(3)	0.046(2)	0.0244(19)	0.025(2)	0.019(2)
C5	0.062(2)	0.078(2)	0.044(2)	0.0032(18)	0.0112(18)	0.016(2)
C6	0.0404(17)	0.0508(17)	0.0448(19)	-0.0034(15)	0.0089(15)	0.0093(14)
C7	0.0395(17)	0.0524(18)	0.0404(18)	-0.0008(14)	0.0148(14)	-0.0064(13)
C8	0.0441(18)	0.0505(17)	0.0320(16)	0.0004(13)	0.0096(14)	0.0000(14)
C9	0.0476(19)	0.056(2)	0.0445(19)	-0.0090(15)	0.0174(15)	-0.0041(16)
C10	0.0501(19)	0.0516(19)	0.0396(18)	-0.0011(14)	0.0116(15)	-0.0053(15)
C11	0.071(2)	0.062(2)	0.061(2)	0.0097(18)	0.021(2)	-0.0090(19)
C12	0.101(3)	0.050(2)	0.071(3)	0.0100(19)	0.007(2)	0.000(2)
C13	0.082(3)	0.062(2)	0.060(2)	0.0029(19)	0.012(2)	0.023(2)
C14	0.052(2)	0.071(2)	0.0433(19)	0.0014(16)	0.0092(16)	0.0128(17)
C15	0.066(3)	0.089(3)	0.080(3)	-0.005(2)	0.045(2)	-0.005(2)

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Table 7. Hydrogen atomic coordinates and isotropic atomic displacement parameters (\AA^2) for 4b.

	x/a	y/b	z/c	U(eq)	
Н3	0.3576	0.1052	0.4176	0.078000	
H4	0.4958	0.1751	0.5740	0.085000	
H5	0.6438	0.3404	0.5752	0.075000	
H11	0.6202	0.7645	0.0751	0.077000	
H12	0.4966	0.9470	0.1065	0.094000	
H13	0.3625	0.8817	0.1849	0.085000	
H14	0.3481	0.6322	0.2370	0.068000	
H15A	0.6993	0.4926	0.0231	0.110000	
H15B	0.7583	0.3653	0.1048	0.110000	
H15C	0.7773	0.5384	0.1363	0.110000	

Symmetry transformations used to generate equivalent atoms:

ORTEP diagram of compounds 4f (CCDC-2179832)

Table 1. Sample and crystal data for 4f.			
Identification code	4f		
Chemical formula	$C_{20}H_{14}N_2O$		
Formula weight	298.33 g/mol		
Temperature	300(2) K		
Wavelength	0.71073 Å		
Crystal size	0.100 x 0.190 x 0.230 mm		
Crystal system	monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 8.7215(4) Å	$\alpha = 90^{\circ}$	
	b = 8.0965(4) Å	$\beta = 98.010(2)^{\circ}$	
	c = 21.5872(11) Å	$\gamma = 90^{\circ}$	
Volume	1509.48(13) Å ³		
Z	4		
Density (calculated)	1.313 g/cm ³		
Absorption coefficient	0.082 mm ⁻¹		
F(000)	624		

Table 2. Data collection and structure refinement for 4f.

Theta range for data collection	1.91 to 28.20°		
Index ranges	-11<=h<=11, -10)<=k<=8, -28<=l<=28	
Reflections collected	19671		
Independent reflections	3694 [R(int) = 0.	.0432]	
Max. and min. transmission	0.9920 and 0.981	10	
Structure solution technique	direct methods		
Structure solution program	SHELXT 2018/2 (Sheldrick, 2018)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	3694 / 0 / 209		
Goodness-of-fit on F ²	1.031		
Final R indices	2342 data; I>2σ(I)	R1 = 0.0495, wR2 = 0.1136	
	all data	R1 = 0.0914, wR2 = 0.1405	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0585P) ² +0.3359P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	0.163 and -0.159) eÅ ⁻³	
R.M.S. deviation from mean	0.037 eÅ ⁻³		

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters $({\rm \AA}^2)$ for 4f.

	x/a	y/b	z/c	U(eq)
01	0.45954(13)	0.49932(13)	0.36249(6)	0.0536(3)
N1	0.65524(15)	0.99881(16)	0.39988(6)	0.0478(4)
N2	0.75385(16)	0.94521(18)	0.44315(7)	0.0519(4)
C1	0.61821(17)	0.71315(19)	0.40625(7)	0.0395(4)

U(eq) is defined as one third of the trace of the orthogonalized $U_{ij} \, \text{tensor.}$

	x/a	y/b	z/c	U(eq)
C2	0.57753(18)	0.54790(19)	0.40609(7)	0.0424(4)
C3	0.6611(2)	0.4446(2)	0.45008(8)	0.0546(5)
C4	0.7797(2)	0.5063(2)	0.49311(9)	0.0635(5)
C5	0.8206(2)	0.6701(2)	0.49437(8)	0.0608(5)
C6	0.73663(18)	0.7701(2)	0.45011(7)	0.0457(4)
C7	0.55520(17)	0.85754(18)	0.36848(7)	0.0401(4)
C8	0.4154(2)	0.3293(2)	0.36201(11)	0.0676(6)
C9	0.57317(18)	0.87072(18)	0.29948(7)	0.0418(4)
C10	0.38610(17)	0.90346(18)	0.36767(7)	0.0397(4)
C11	0.32315(18)	0.95793(19)	0.30806(7)	0.0425(4)
C12	0.44122(18)	0.94345(19)	0.26636(7)	0.0433(4)
C13	0.4395(2)	0.9869(2)	0.20388(8)	0.0562(5)
C14	0.5670(2)	0.9500(3)	0.17508(9)	0.0688(6)
C15	0.6935(2)	0.8718(3)	0.20733(10)	0.0706(6)
C16	0.7002(2)	0.8334(2)	0.27056(9)	0.0562(5)
C17	0.2992(2)	0.9004(2)	0.41606(8)	0.0503(4)
C18	0.1461(2)	0.9515(2)	0.40466(9)	0.0589(5)
C19	0.0831(2)	0.0054(2)	0.34611(10)	0.0588(5)
C20	0.1698(2)	0.0100(2)	0.29737(9)	0.0529(5)

Table 4. Bond lengths $({\rm \AA})$ for 4f.

O1-C2	1.3526(19)	O1-C8	1.429(2)
N1-N2	1.2556(18)	N1-C7	1.5377(19)
N2-C6	1.436(2)	C1-C6	1.380(2)
C1-C2	1.384(2)	C1-C7	1.486(2)
C2-C3	1.393(2)	C3-C4	1.384(3)
C4-C5	1.373(3)	C5-C6	1.382(2)

C7-C10	1.519(2)	C7-C9	1.523(2)
C9-C16	1.379(2)	C9-C12	1.397(2)
C10-C17	1.374(2)	C10-C11	1.398(2)
C11-C20	1.390(2)	C11-C12	1.464(2)
C12-C13	1.392(2)	C13-C14	1.380(3)
C14-C15	1.375(3)	C15-C16	1.393(3)
C17-C18	1.387(2)	C18-C19	1.377(3)
C19-C20	1.379(3)		

Table 5. Bond angles (°) for 4f.

C2-O1-C8	117.60(13)	N2-N1-C7	111.02(12)
N1-N2-C6	110.38(13)	C6-C1-C2	119.48(14)
C6-C1-C7	107.32(14)	C2-C1-C7	133.15(14)
01-C2-C1	116.92(13)	01-C2-C3	125.09(15)
C1-C2-C3	117.99(15)	C4-C3-C2	120.79(17)
C5-C4-C3	122.02(16)	C4-C5-C6	116.17(17)
C1-C6-C5	123.54(16)	C1-C6-N2	109.73(13)
C5-C6-N2	126.70(15)	C1-C7-C10	118.89(13)
C1-C7-C9	120.74(13)	C10-C7-C9	101.75(12)
C1-C7-N1	101.51(11)	C10-C7-N1	108.27(12)
C9-C7-N1	104.45(12)	C16-C9-C12	121.13(16)
C16-C9-C7	128.77(15)	C12-C9-C7	109.89(14)
C17-C10-C11	121.19(15)	C17-C10-C7	128.67(14)
C11-C10-C7	110.12(14)	C20-C11-C10	119.57(16)
C20-C11-C12	131.69(15)	C10-C11-C12	108.72(13)
C13-C12-C9	119.94(16)	C13-C12-C11	131.45(15)
C9-C12-C11	108.60(13)	C14-C13-C12	118.76(17)
C15-C14-C13	120.80(18)	C14-C15-C16	121.31(19)
C9-C16-C15	117.94(18)	C10-C17-C18	118.67(16)

C19-C18-C17	120.55(18)	C18-C19-C20	121.18(17)
C19-C20-C11	118.84(17)		

Table 6. Anisotropic atomic displacement parameters (\AA^2) for 4f.

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U 11	U22	U 33	U23	U 13	U12
01	0.0552(7)	0.0315(6)	0.0700(8)	0.0039(5)	-0.0062(6)	-0.0034(5)
N1	0.0488(8)	0.0386(8)	0.0538(8)	-0.0028(6)	-0.0008(7)	-0.0014(6)
N2	0.0507(8)	0.0479(9)	0.0544(9)	-0.0057(7)	-0.0026(7)	-0.0004(7)
C1	0.0405(8)	0.0363(9)	0.0411(8)	0.0018(6)	0.0041(6)	0.0042(7)
C2	0.0443(9)	0.0358(9)	0.0476(9)	0.0030(7)	0.0085(7)	0.0050(7)
C3	0.0629(11)	0.0407(10)	0.0603(11)	0.0126(8)	0.0083(9)	0.0085(8)
C4	0.0697(12)	0.0602(13)	0.0571(11)	0.0161(9)	-0.0038(9)	0.0178(10)
C5	0.0601(11)	0.0637(13)	0.0533(10)	0.0018(9)	-0.0107(8)	0.0111(9)
C6	0.0461(9)	0.0440(10)	0.0458(9)	-0.0015(7)	0.0021(7)	0.0053(7)
C7	0.0418(8)	0.0306(8)	0.0463(9)	0.0017(6)	0.0007(7)	-0.0003(6)
C8	0.0592(11)	0.0342(10)	0.1073(16)	0.0053(10)	0.0038(11)	-0.0059(8)
C9	0.0455(9)	0.0311(8)	0.0486(9)	0.0019(7)	0.0057(7)	-0.0052(7)
C10	0.0431(8)	0.0287(8)	0.0463(9)	-0.0008(6)	0.0022(7)	0.0003(6)
C11	0.0449(9)	0.0320(8)	0.0484(9)	-0.0011(7)	-0.0015(7)	-0.0035(7)
C12	0.0491(9)	0.0346(8)	0.0442(9)	0.0008(7)	-0.0001(7)	-0.0069(7)
C13	0.0584(11)	0.0582(12)	0.0489(10)	0.0084(8)	-0.0032(9)	-0.0119(9)
C14	0.0756(14)	0.0804(15)	0.0512(11)	0.0083(10)	0.0116(10)	-0.0193(11)
C15	0.0696(13)	0.0796(15)	0.0683(13)	0.0019(11)	0.0295(11)	-0.0089(11)
C16	0.0502(10)	0.0523(11)	0.0672(12)	0.0049(9)	0.0125(9)	-0.0027(8)
C17	0.0541(10)	0.0466(10)	0.0503(10)	0.0009(8)	0.0076(8)	0.0027(8)
C18	0.0526(11)	0.0578(12)	0.0686(12)	-0.0082(9)	0.0168(9)	-0.0004(9)
C19	0.0417(9)	0.0550(12)	0.0779(13)	-0.0108(10)	0.0024(9)	0.0041(8)

	U11	U22	U33	U ₂₃	U13	U ₁₂
C20	0.0483(9)	0.0454(10)	0.0607(11)	-0.0008(8)	-0.0081(8)	0.0013(8)

Table 7. Hydrogen atomic coordinates and isotropic atomic displacement parameters $({
m \AA}^2)$ for 4f.

	x/a	y/b	z/c	U(eq)	
H3	0.6369	0.3327	0.4505	0.066000	
H4	0.8333	0.4346	0.5221	0.076000	
H5	0.9003	0.7114	0.5233	0.073000	
H8A	0.3365	0.3090	0.3272	0.101000	
H8B	0.3760	0.3033	0.4002	0.101000	
H8C	0.5039	0.2614	0.3583	0.101000	
H13	0.3540	1.0398	0.1819	0.067000	
H14	0.5673	0.9784	0.1334	0.083000	
H15	0.7764	0.8439	0.1865	0.085000	
H16	0.7876	0.7842	0.2926	0.067000	
H17	0.3422	0.8649	0.4557	0.060000	
H18	0.0854	0.9492	0.4368	0.071000	
H19	-0.0198	1.0393	0.3393	0.071000	
H20	0.1265	1.0472	0.2581	0.064000	

Symmetry transformations used to generate equivalent atoms:

ORTEP diagram of compounds 5a (CCDC-2179553)

Table 1. Crystal data and structure refinement for 5a.

Identification code	5a	
Empirical formula	C22 H19 N3 O3 S	
Formula weight	405.46	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 9.1555(6) Å	$\alpha = 103.303(2)^{\circ}.$
	b = 10.4074(7) Å	$\beta = 99.290(2)^{\circ}.$
	c = 11.9079(7) Å	$\gamma = 112.822(2)^{\circ}.$
Volume	977.20(11) Å ³	
Z	2	
Density (calculated)	1.378 Mg/m ³	
Absorption coefficient	0.195 mm ⁻¹	
F(000)	424	
Crystal size	0.238 x 0.117 x 0.052	mm ³
Theta range for data collection	3.128 to 26.484°.	
Index ranges	-11<=h<=11, -13<=k<	<=13, -14<=l<=14
Reflections collected	30992	
Independent reflections	4015 [R(int) = 0.1050]
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from e	equivalents
Max. and min. transmission	0.986 and 0.943	
Refinement method	Full-matrix least-squa	res on F ²
Data / restraints / parameters	4015 / 0 / 264	
Goodness-of-fit on F ²	1.027	
Final R indices [I>2sigma(I)]	R1 = 0.0511, WR2 = 0 S69	0.1096

R indices (all data)	R1 = 0.0846, wR2 = 0.1251
Extinction coefficient	n/a
Largest diff. peak and hole	0.246 and -0.358 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **5a**.

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)	
C(1)	1200(3)	57(3)	1504(2)	41(1)	
C(2)	1144(4)	-1265(3)	878(3)	57(1)	
C(3)	2039(4)	-1240(3)	45(3)	65(1)	
C(4)	2945(4)	41(3)	-169(2)	57(1)	
C(5)	3008(3)	1373(3)	462(2)	43(1)	
C(6)	2146(3)	1380(2)	1319(2)	35(1)	
C(7)	1850(3)	2519(3)	2086(2)	34(1)	
C(8)	638(3)	1745(3)	2724(2)	42(1)	
C(9)	-714(4)	-810(4)	2781(3)	72(1)	
C(10)	5227(3)	4704(2)	2334(2)	35(1)	
C(11)	5682(3)	4747(3)	3515(2)	43(1)	
C(12)	7218(4)	4849(3)	3989(3)	57(1)	
C(13)	8265(4)	4854(3)	3269(3)	65(1)	
C(14)	7814(4)	4820(3)	2102(3)	60(1)	
C(15)	6291(3)	4751(3)	1625(2)	46(1)	
C(16)	3862(3)	7197(2)	3324(2)	33(1)	
C(17)	2497(3)	7217(3)	3664(2)	39(1)	
C(18)	2663(3)	7878(3)	4855(2)	41(1)	
C(19)	4167(3)	8509(3)	5718(2)	38(1)	
C(20)	5532(3)	8499(3)	5348(2)	41(1)	
C(21)	5399(3)	7862(3)	4162(2)	39(1)	
C(22)	4308(4)	9142(3)	7020(2)	53(1)	
N(1)	2351(2)	3906(2)	2327(2)	37(1)	
N(2)	3627(2)	4622(2)	1822(2)	35(1)	
N(3)	367(3)	306(2)	2363(2)	45(1)	
O (1)	2015(2)	5881(2)	1111(2)	53(1)	

O(2)	5049(2)	7011(2)	1471(2)	51(1)
O(3)	72(3)	2284(2)	3441(2)	64(1)
S (1)	3620(1)	6258(1)	1825(1)	38(1)

Table 3	Bond lengths [Å] and angles [°] for 5a
Table 5.	Donu lenguis [A] and angles [] 101 Ja.

C(1)-C(2)	1.383(4)
C(1)-C(6)	1.404(3)
C(1)-N(3)	1.406(3)
C(2)-C(3)	1.383(4)
C(2)-H(2)	0.9300
C(3)-C(4)	1.378(5)
C(3)-H(3)	0.9300
C(4)-C(5)	1.391(4)
C(4)-H(4)	0.9300
C(5)-C(6)	1.388(3)
C(5)-H(5)	0.9300
C(6)-C(7)	1.464(3)
C(7)-N(1)	1.277(3)
C(7)-C(8)	1.523(3)
C(8)-O(3)	1.208(3)
C(8)-N(3)	1.368(3)
C(9)-N(3)	1.453(3)
C(9)-H(9A)	0.9600
C(9)-H(9B)	0.9600
C(9)-H(9C)	0.9600
C(10)-C(15)	1.383(3)
C(10)-C(11)	1.386(3)
C(10)-N(2)	1.454(3)
C(11)-C(12)	1.381(4)
C(11)-H(11)	0.9300
C(12)-C(13)	1.384(4)
C(12)-H(12)	0.9300
C(13)-C(14)	1.372(5)
C(13)-H(13)	0.9300
C(14)-C(15)	1.386(4)

C(14)-H(14)	0.9300
C(15)-H(15)	0.9300
C(16)-C(17)	1.381(3)
C(16)-C(21)	1.388(3)
C(16)-S(1)	1.758(2)
C(17)-C(18)	1.381(3)
C(17)-H(17)	0.9300
C(18)-C(19)	1.383(3)
C(18)-H(18)	0.9300
C(19)-C(20)	1.393(3)
C(19)-C(22)	1.501(3)
C(20)-C(21)	1.379(3)
C(20)-H(20)	0.9300
C(21)-H(21)	0.9300
C(22)-H(22A)	0.9600
C(22)-H(22B)	0.9600
C(22)-H(22C)	0.9600
N(1)-N(2)	1.428(3)
N(2)-S(1)	1.705(2)
O(1)-S(1)	1.4260(19)
O(2)-S(1)	1.4272(18)
C(2)-C(1)-C(6)	121.5(3)
C(2)-C(1)-N(3)	128.0(3)
C(6)-C(1)-N(3)	110.4(2)
C(1)-C(2)-C(3)	117.4(3)
C(1)-C(2)-H(2)	121.3
C(3)-C(2)-H(2)	121.3
C(4)-C(3)-C(2)	121.9(3)
C(4)-C(3)-H(3)	119.1
C(2)-C(3)-H(3)	119.1
C(3)-C(4)-C(5)	120.9(3)
C(3)-C(4)-H(4)	119.6
C(5)-C(4)-H(4)	119.6
C(6)-C(5)-C(4)	118.3(3)
C(6)-C(5)-H(5)	120.9
C(4)-C(5)-H(5)	120.9
-------------------	------------
C(5)-C(6)-C(1)	120.0(2)
C(5)-C(6)-C(7)	133.5(2)
C(1)-C(6)-C(7)	106.3(2)
N(1)-C(7)-C(6)	136.4(2)
N(1)-C(7)-C(8)	117.3(2)
C(6)-C(7)-C(8)	106.2(2)
O(3)-C(8)-N(3)	126.3(2)
O(3)-C(8)-C(7)	127.8(2)
N(3)-C(8)-C(7)	105.8(2)
N(3)-C(9)-H(9A)	109.5
N(3)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
N(3)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(15)-C(10)-C(11)	120.6(2)
C(15)-C(10)-N(2)	118.8(2)
C(11)-C(10)-N(2)	120.6(2)
C(12)-C(11)-C(10)	119.6(3)
C(12)-C(11)-H(11)	120.2
C(10)-C(11)-H(11)	120.2
C(11)-C(12)-C(13)	119.8(3)
C(11)-C(12)-H(12)	120.1
C(13)-C(12)-H(12)	120.1
C(14)-C(13)-C(12)	120.4(3)
C(14)-C(13)-H(13)	119.8
C(12)-C(13)-H(13)	119.8
C(13)-C(14)-C(15)	120.2(3)
C(13)-C(14)-H(14)	119.9
C(15)-C(14)-H(14)	119.9
C(10)-C(15)-C(14)	119.3(3)
C(10)-C(15)-H(15)	120.4
C(14)-C(15)-H(15)	120.4
C(17)-C(16)-C(21)	120.6(2)
C(17)-C(16)-S(1)	119.22(18)

C(21)-C(16)-S(1)	120.17(18)
C(16)-C(17)-C(18)	119.4(2)
C(16)-C(17)-H(17)	120.3
C(18)-C(17)-H(17)	120.3
C(17)-C(18)-C(19)	121.4(2)
C(17)-C(18)-H(18)	119.3
C(19)-C(18)-H(18)	119.3
C(18)-C(19)-C(20)	118.1(2)
C(18)-C(19)-C(22)	120.7(2)
C(20)-C(19)-C(22)	121.1(2)
C(21)-C(20)-C(19)	121.5(2)
C(21)-C(20)-H(20)	119.3
C(19)-C(20)-H(20)	119.3
C(20)-C(21)-C(16)	119.0(2)
C(20)-C(21)-H(21)	120.5
C(16)-C(21)-H(21)	120.5
C(19)-C(22)-H(22A)	109.5
C(19)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(19)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(7)-N(1)-N(2)	115.73(18)
N(1)-N(2)-C(10)	115.12(18)
N(1)-N(2)-S(1)	107.26(14)
C(10)-N(2)-S(1)	115.54(15)
C(8)-N(3)-C(1)	111.1(2)
C(8)-N(3)-C(9)	123.3(2)
C(1)-N(3)-C(9)	125.6(2)
O(1)-S(1)-O(2)	120.47(12)
O(1)-S(1)-N(2)	105.31(11)
O(2)-S(1)-N(2)	104.90(10)
O(1)-S(1)-C(16)	109.31(11)
O(2)-S(1)-C(16)	109.77(11)
N(2)-S(1)-C(16)	106.00(10)

Table 4. Anisotropic displacement parameters (Å²x 10³)for**5a**. The anisotropic Displacement factor exponent takes the form: $-2\pi^2$ [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U13	U12	
C(1)	31(1)	37(1)	47(1)	10(1)	1(1)	13(1)	
C(2)	54(2)	34(2)	70(2)	9(1)	0(2)	19(1)	
C(3)	82(2)	51(2)	56(2)	-3(2)	6(2)	40(2)	
C(4)	63(2)	67(2)	43(2)	3(1)	12(1)	40(2)	
C(5)	44(2)	45(2)	35(1)	6(1)	7(1)	20(1)	
C(6)	32(1)	34(1)	34(1)	7(1)	5(1)	14(1)	
C(7)	31(1)	34(1)	34(1)	9(1)	9(1)	13(1)	
C(8)	31(1)	43(2)	46(1)	12(1)	10(1)	11(1)	
C(9)	57(2)	58(2)	101(3)	46(2)	30(2)	14(2)	
C(10)	36(1)	29(1)	37(1)	8(1)	10(1)	12(1)	
C(11)	48(2)	40(1)	40(1)	15(1)	11(1)	16(1)	
C(12)	51(2)	47(2)	63(2)	25(1)	-1(2)	13(1)	
C(13)	35(2)	49(2)	100(3)	27(2)	3(2)	13(1)	
C(14)	40(2)	49(2)	81(2)	14(2)	22(2)	14(1)	
C(15)	39(2)	45(2)	45(1)	7(1)	15(1)	14(1)	
C(16)	39(1)	29(1)	33(1)	13(1)	11(1)	14(1)	
C(17)	33(1)	40(1)	41(1)	14(1)	9(1)	15(1)	
C(18)	41(2)	44(1)	46(1)	16(1)	20(1)	21(1)	
C(19)	47(2)	32(1)	37(1)	12(1)	14(1)	18(1)	
C(20)	38(1)	37(1)	40(1)	10(1)	5(1)	14(1)	
C(21)	37(1)	36(1)	43(1)	12(1)	15(1)	15(1)	
C(22)	67(2)	49(2)	41(1)	10(1)	19(1)	26(2)	
N(1)	36(1)	34(1)	39(1)	9(1)	16(1)	13(1)	
N(2)	36(1)	33(1)	34(1)	11(1)	13(1)	13(1)	
N(3)	37(1)	40(1)	58(1)	21(1)	15(1)	12(1)	
O(1)	59(1)	60(1)	40(1)	13(1)	2(1)	32(1)	
O(2)	65(1)	48(1)	48(1)	26(1)	33(1)	22(1)	
O(3)	59(1)	63(1)	72(1)	18(1)	42(1)	22(1)	
S(1)	48(1)	39(1)	31(1)	14(1)	13(1)	19(1)	

	X	у	Z	U(eq)	
H(2)	528	-2137	1011	68	
H(3)	2029	-2114	-382	78	
H(4)	3521	15	-742	69	
H(5)	3612	2237	313	52	
H(9A)	-1085	-354	3396	107	
H(9B)	-123	-1291	3103	107	
H(9C)	-1649	-1522	2122	107	
H(11)	4958	4708	3985	52	
H(12)	7548	4914	4789	69	
H(13)	9280	4880	3578	78	
H(14)	8534	4842	1629	72	
H(15)	5989	4738	837	55	
H(17)	1474	6788	3097	46	
H(18)	1745	7899	5082	50	
H(20)	6556	8933	5914	49	
H(21)	6324	7877	3927	46	
H(22A)	3520	9532	7084	79	
H(22B)	5401	9915	7419	79	
H(22C)	4091	8383	7388	79	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **5a**.

Table 6. Torsion angles $[^{\circ}]$ for **5a**.

C(6)-C(1)-C(2)-C(3)	-0.9(4)
N(3)-C(1)-C(2)-C(3)	178.0(3)
C(1)-C(2)-C(3)-C(4)	-0.6(4)
C(2)-C(3)-C(4)-C(5)	0.8(5)
C(3)-C(4)-C(5)-C(6)	0.5(4)
C(4)-C(5)-C(6)-C(1)	-1.9(4)
C(4)-C(5)-C(6)-C(7)	-175.8(3)
C(2)-C(1)-C(6)-C(5)	2.2(4)
N(3)-C(1)-C(6)-C(5)	-176.9(2)
C(2)-C(1)-C(6)-C(7)	177.6(2)
N(3)-C(1)-C(6)-C(7)	-1.6(3)
C(5)-C(6)-C(7)-N(1)	-6.7(5)
C(1)-C(6)-C(7)-N(1)	178.8(3)
C(5)-C(6)-C(7)-C(8)	173.9(3)
C(1)-C(6)-C(7)-C(8)	-0.6(3)
N(1)-C(7)-C(8)-O(3)	0.3(4)
C(6)-C(7)-C(8)-O(3)	179.9(3)
N(1)-C(7)-C(8)-N(3)	-177.0(2)
C(6)-C(7)-C(8)-N(3)	2.5(3)
C(15)-C(10)-C(11)-C(12)	0.4(4)
N(2)-C(10)-C(11)-C(12)	-178.9(2)
C(10)-C(11)-C(12)-C(13)	-2.3(4)
C(11)-C(12)-C(13)-C(14)	2.7(4)
C(12)-C(13)-C(14)-C(15)	-1.2(4)
C(11)-C(10)-C(15)-C(14)	1.0(4)
N(2)-C(10)-C(15)-C(14)	-179.6(2)
C(13)-C(14)-C(15)-C(10)	-0.6(4)
C(21)-C(16)-C(17)-C(18)	-1.4(4)
S(1)-C(16)-C(17)-C(18)	176.21(19)
C(16)-C(17)-C(18)-C(19)	-0.7(4)
C(17)-C(18)-C(19)-C(20)	1.8(4)
C(17)-C(18)-C(19)-C(22)	-176.2(2)
C(18)-C(19)-C(20)-C(21)	-1.0(4)
C(22)-C(19)-C(20)-C(21)	177.1(2)

C(19)-C(20)-C(21)-C(16)	-1.0(4)
C(17)-C(16)-C(21)-C(20)	2.1(4)
S(1)-C(16)-C(21)-C(20)	-175.39(19)
C(6)-C(7)-N(1)-N(2)	-6.3(4)
C(8)-C(7)-N(1)-N(2)	172.97(19)
C(7)-N(1)-N(2)-C(10)	-69.5(2)
C(7)-N(1)-N(2)-S(1)	160.37(17)
C(15)-C(10)-N(2)-N(1)	151.8(2)
C(11)-C(10)-N(2)-N(1)	-28.8(3)
C(15)-C(10)-N(2)-S(1)	-82.2(2)
C(11)-C(10)-N(2)-S(1)	97.1(2)
O(3)-C(8)-N(3)-C(1)	179.1(3)
C(7)-C(8)-N(3)-C(1)	-3.5(3)
O(3)-C(8)-N(3)-C(9)	1.9(4)
C(7)-C(8)-N(3)-C(9)	179.4(2)
C(2)-C(1)-N(3)-C(8)	-175.7(3)
C(6)-C(1)-N(3)-C(8)	3.4(3)
C(2)-C(1)-N(3)-C(9)	1.4(4)
C(6)-C(1)-N(3)-C(9)	-179.6(3)
N(1)-N(2)-S(1)-O(1)	-59.66(16)
C(10)-N(2)-S(1)-O(1)	170.47(16)
N(1)-N(2)-S(1)-O(2)	172.26(14)
C(10)-N(2)-S(1)-O(2)	42.39(18)
N(1)-N(2)-S(1)-C(16)	56.13(16)
C(10)-N(2)-S(1)-C(16)	-73.74(17)
C(17)-C(16)-S(1)-O(1)	11.5(2)
C(21)-C(16)-S(1)-O(1)	-170.91(19)
C(17)-C(16)-S(1)-O(2)	145.69(19)
C(21)-C(16)-S(1)-O(2)	-36.7(2)
C(17)-C(16)-S(1)-N(2)	-101.5(2)
C(21)-C(16)-S(1)-N(2)	76.0(2)

Symmetry transformations used to generate equivalent atoms: