Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Vapochromism of indolenine-based heptamethine cyanine dye adsorbed on silica gel

Mikiko Shibayama,[†] Yuki Uehashi,[†] Shouhei Ajioka,[†] Yasuhiro Kubota,[†] Toshiyasu Inuzuka,[‡] and Kazumasa Funabiki[†]*

[†]Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan.

[‡] Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

*Corresponding Author. E-mail: <u>funabiki@gifu-u.ac.jp</u>

(Contents)

¹ H, ¹³ C NMR, IR and HRMS for 3	-S2-3
Figures S1, S2, and S3	S4
Computational calculation data	S5-S9
Reference	S10

```
2-((E)-2-((E)-2-chloro-3-(2-((E)-1,3,3-trimethylindolin-2-
ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-1,3,3-trimethyl-3H-indol-1-ium iodide
(3)
```


¹³C NMR

HRMS

IR

Figure S1. Photographs of the TLC plates adsorbed with HMCD 3 using an acetone solution and exposed to PhCl vapor and left in the air.

Figure S2. UV-Vis-NIR spectrum of TLC plates adsorbed with HMCD **3** using an acetone solution and exposed to solvents. (a) PhCl, (b) acetone, (c) MeOH, and (d) hexane vapor, and (b) wavelengths of the peaks in UV-Vis-NIR spectrum of HMCD **3**-adsorbed TLC plates and exposed to PhCl vapor.

Figure S3. Photograph of various solutions (0.5 ml) including HMCD 3 (31 mg).

Computational Details. All calculations were performed using computational chemistry software package Gaussian 16 ver. B.01^[2] using Super Computers at Research Center for Computational Science, Okazaki, Japan.

a) Ground State Details.

Ground state geometries of **3** and **3'** were computed at RB3LYP/6-31+G(d,p) level of theory. At the optimized structures, no imaginary frequency was found through the frequency analysis. All coordinates are reported as XYZ Cartesian coordinates. And computed E (RB3LYP) and sum of zero-point and thermal correction energies of optimized structures are shown.

3

E (RB3LYP) = -1810.682746 a.u.

Sum of electronic and thermal Energies = -1810.044293 a.u. Imaginary Frequency = 0

 Table S1. Cartesian coordinates of the optimized 3.

	Coordi	nates (Angstro	oms)
Atom	Х	Y	Ζ
С	7.205471	0.07864	-0.18412
С	6.674557	-1.20701	-0.04791
С	7.523434	-2.30607	-0.0221
С	8.905616	-2.0978	-0.13413
С	9.419682	-0.80411	-0.26973
С	8.574457	0.311587	-0.29721
С	4.934923	0.395936	-0.04864
Н	7.131595	-3.31364	0.083054
Н	9.581508	-2.94643	-0.11534
Н	10.4915	-0.65701	-0.35538
Н	8.990493	1.307233	-0.4027
Ν	6.139476	1.01029	-0.18151
С	6.318352	2.451829	-0.30385
Н	7.377986	2.676764	-0.40194
Н	5.798495	2.828084	-1.19032
Н	5.934116	2.962252	0.584852
С	5.159641	-1.12338	0.050302
С	4.503407	-1.87946	-1.13303

H3.413007-1.82665H4.836063-1.47445C4.676757-1.68803H3.591064-1.62715H4.965154-2.74036H5.133572-1.14965C3.7406441.121192H3.8249432.19743C2.4596740.568663H2.381547-0.5069C1.2542051.283781C-0.0000070.634044C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	-1.09597 -2.09288 1.410411 1.514061 1.488211 2.245536 -0.01712 -0.10919 0.111755 0.183346 0.137449 0.201922 0.137661 0.111953 0.182227
H4.836063-1.47445C4.676757-1.68803H3.591064-1.62715H4.965154-2.74036H5.133572-1.14965C3.7406441.121192H3.8249432.19743C2.4596740.568663H2.381547-0.5069C1.2542051.283781C-0.0000070.634044C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	-2.09288 1.410411 1.514061 1.488211 2.245536 -0.01712 -0.10919 0.111755 0.183346 0.137449 0.201922 0.137661 0.111953
C4.676757-1.68803H3.591064-1.62715H4.965154-2.74036H5.133572-1.14965C3.7406441.121192H3.8249432.19743C2.4596740.568663H2.381547-0.5069C1.2542051.283781C-0.0000070.634044C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	1.410411 1.514061 1.488211 2.245536 -0.01712 -0.10919 0.111755 0.183346 0.137449 0.201922 0.137661 0.111953 0.182227
H3.591064-1.62715H4.965154-2.74036H5.133572-1.14965C3.7406441.121192H3.8249432.19743C2.4596740.568663H2.381547-0.5069C1.2542051.283781C-0.0000070.634044C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	1.514061 1.488211 2.245536 -0.01712 -0.10919 0.111755 0.183346 0.137449 0.201922 0.137661 0.111953
H4.965154-2.74036H5.133572-1.14965C3.7406441.121192H3.8249432.19743C2.4596740.568663H2.381547-0.5069C1.2542051.283781C-0.0000070.634044C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	1.488211 2.245536 -0.01712 -0.10919 0.111755 0.183346 0.137449 0.201922 0.137661 0.111953
H5.133572-1.14965C3.7406441.121192H3.8249432.19743C2.4596740.568663H2.381547-0.5069C1.2542051.283781C-0.0000070.634044C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	2.245536 -0.01712 -0.10919 0.111755 0.183346 0.137449 0.201922 0.137661 0.111953
C3.7406441.121192H3.8249432.19743C2.4596740.568663H2.381547-0.5069C1.2542051.283781C-0.0000070.634044C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	-0.01712 -0.10919 0.111755 0.183346 0.137449 0.201922 0.137661 0.111953
H3.8249432.19743C2.4596740.568663H2.381547-0.5069C1.2542051.283781C-0.0000070.634044C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	-0.10919 0.111755 0.183346 0.137449 0.201922 0.137661 0.111953
C2.4596740.568663H2.381547-0.5069C1.2542051.283781C-0.0000070.634044C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	0.111755 0.183346 0.137449 0.201922 0.137661 0.111953
H2.381547-0.5069C1.2542051.283781C-0.0000070.634044C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	0.183346 0.137449 0.201922 0.137661 0.111953
C1.2542051.283781C-0.0000070.634044C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	0.137449 0.201922 0.137661 0.111953
C-0.0000070.634044C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	0.201922 0.137661 0.111953
C-1.254211.283798C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	0.137661 0.111953
C-2.459680.56867H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	0.111953
H-2.38153-0.50691C-3.740661.121216H-3.824972.19747C-4.934940.395957	0 102207
C-3.740661.121216H-3.824972.19747C-4.934940.395957	0.183307
H -3.82497 2.19747 C -4.93494 0.395957	-0.0167
C -4.93494 0.395957	-0.10858
	-0.0483
C -5.15964 -1.12337	0.050391
C -6.67454 -1.20703	-0.04807
C -7.20547 0.078644	-0.18404
C -7.52339 -2.30611	-0.02262
C -8.57444 0.311585	-0.29724
C -8.90556 -2.09785	-0.13477
Н -7.13154 -3.31369	0.082356
C -9.41965 -0.80414	-0.27013
Н -8.99049 1.307245	-0.40256
Н -9.58144 -2.9465	-0.11625
Н -10.4915 -0.65704	-0.35587
N -6.13949 1.010316	-0.18112
C -4.67699 -1.68821	1.410514
Н -4.96542 -2.74055	1.488129
Н -3.59132 -1.62737	1.514362
Н -5.13394 -1.14993	2.245628
C -4.50317 -1.87927	-1.13292
Н -3.41278 -1.82639	-1.09567
Н -4.79157 -2.93369	

Н	-4.83569	-1.47417	-2.09278
С	-6.31838	2.451875	-0.3032
Н	-5.93425	2.962137	0.585629
Н	-5.79844	2.828307	-1.18956
Н	-7.37801	2.676807	-0.40137
С	1.257056	2.802177	0.052552
Н	2.138969	3.193901	0.568894
Н	1.349366	3.109592	-0.99982
С	-1.25712	2.802212	0.053005
Н	-1.34991	3.109786	-0.99928
Н	-2.13882	3.193823	0.569796
С	0.000087	3.420397	0.66324
Н	0.000068	4.504162	0.508242
Н	0.000287	3.249795	1.746983
Cl	-0.000038	-1.1364	0.341466

<u>3'</u>

E (RB3LYP) = -1810.955053 a.u.

Sum of electronic and thermal Energies = -1810.303001 a.u.

Imaginary Frequency = 0

Table S2. Cartesian coordinates of the optimized 3'.

	Coordinates (Angstroms)		
Atom	Х	Y	Ζ
С	-7.23676	0.132693	0.268329
С	-6.70638	-1.13771	0.118094
С	-7.57222	-2.22945	0.218863
С	-8.92745	-2.00101	0.473557
С	-9.42597	-0.70074	0.632963
С	-8.575	0.402637	0.526792
С	-4.88516	0.37263	-0.01314
Н	-7.2045	-3.24447	0.106929
Н	-9.60507	-2.84463	0.554733
Н	-10.4794	-0.54518	0.839515
Н	-8.95668	1.411847	0.648685
Ν	-6.17781	1.160412	0.093298

С	-6.44201	2.068383	-1.09273
Н	-7.39714	2.570375	-0.93712
Н	-5.63691	2.798463	-1.16687
Н	-6.48157	1.446917	-1.9861
С	-5.2024	-1.12208	-0.11982
С	-4.48401	-1.94573	0.980332
Н	-4.82775	-2.98293	0.939969
Н	-3.40129	-1.95385	0.839677
Н	-4.70164	-1.55417	1.977643
С	-4.85643	-1.68372	-1.52488
Н	-3.78194	-1.63118	-1.71887
Н	-5.15735	-2.73343	-1.58562
Н	-5.37636	-1.13812	-2.31732
С	-3.73513	1.076315	0.027306
Н	-3.81523	2.152298	0.165231
С	-2.4029	0.529886	-0.10151
Н	-2.33091	-0.52761	-0.31238
С	-1.23818	1.237432	0.019853
С	0.064577	0.582405	-0.10428
С	1.274958	1.24424	-0.03425
С	2.523267	0.522928	-0.04602
Н	2.451953	-0.55108	-0.14241
С	3.764978	1.091988	0.075144
Н	3.838008	2.16786	0.180694
С	5.000259	0.373159	0.07564
С	5.249822	-1.13027	-0.08428
С	6.764178	-1.18404	-0.01304
С	7.267494	0.107204	0.165982
С	7.642176	-2.25795	-0.09586
С	8.630164	0.384812	0.2643
С	9.017124	-2.00687	0.001819
Н	7.282116	-3.27276	-0.23402
С	9.501939	-0.70354	0.178527
Н	9.020753	1.387005	0.397586
Н	9.717961	-2.83273	-0.06122
Н	10.57086	-0.53304	0.249426
Ν	6.167009	1.007131	0.21923
С	4.752891	-1.64914	-1.46051

Η	5.063904	-2.69012	-1.5803
Н	3.66435	-1.612	-1.5411
Η	5.183071	-1.07197	-2.2835
С	4.624482	-1.94027	1.083956
Η	3.532913	-1.91374	1.060376
Η	4.937248	-2.98405	0.998034
Η	4.961613	-1.56601	2.054416
С	6.331081	2.455583	0.402107
Η	6.040887	2.985581	-0.50867
Η	5.727229	2.797196	1.244815
Η	7.374583	2.669691	0.617025
С	-1.19596	2.720578	0.338122
Η	-2.12809	3.205916	0.040526
Η	-1.11115	2.844551	1.427514
С	1.299046	2.759036	0.077402
Η	1.538292	3.035109	1.114838
Η	2.11163	3.150482	-0.54329
С	-0.01552	3.410689	-0.34671
Η	-0.0028	4.474486	-0.09252
Η	-0.12933	3.340688	-1.43516
Cl	0.051577	-1.16823	-0.32249
Η	-6.13526	1.7512	0.93111

Reference

Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.