Electronic Supplementary Material (ESI) for New Journal of Chemistry

Reusable nickel foam supported 3D hierarchical Co-Fe-Ni mixed metal oxides with peroxidase-like activity as biosensor for colorimetric detection of $H_2O_2^+$

Tao Wu^a, Fangyuan Liu^a, Xiangrong Lyu^a, Fengze Wu^a, Hui Zhao^a, Yan Xin^a, Leixuan Li^a, Gaochao Fan^b, Xixi Zhu^{*a}, and Qingyun Liu^{*a}

a.College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

b.Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

*Corresponding Author, zhuxixi@sdust.edu.cn; qyliu@sdust.edu.cn

Supplementary information.

Regents and materials. Nickel nitrate (Ni(NO₃)₂·6H₂O), Iron nitrate (Fe(NO₃)₃·9H₂O), Cobalt nitrate (Co(NO₃)₂·6H₂O), sodium chloride (NaCl), sodium sulfate (Na₂SO₄), sodium carbonate $(Na_2CO_3),$ magnesium chloride $(MgCl_2),$ calcium chloride $(CaCl_2)$, and 3,3,5,5–Tetramethylbenzidine (TMB·2HCI) were purchased from Macklin (Shanghai, China). Humic acid, Glucose, Urea, Arginine, Sodium dodecyl sulfate (SDS), Hydrogen peroxide (30%, H₂O₂) was bought from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Ni foam was purchased from Kunshan Guangjiayuan New Materials Co., Ltd (Kunshan, China). All of reagents are analytical grade and used directly without any further purification. Ultrapure water used throughout the experiment was prepared by the floc water purification system.

Characterization. The crystallinity of the products was analyzed by Rigaku D/Max2500PC powder X-ray diffractometer with Cu K α radiation (Rigaku, Japan, U = 40 kV, I = 40 mA, and $2\theta = 5-80^{\circ}$). The morphology and composition of the samples were verified by scanning electron microscopy (FEI APREO, America) equipped with energy-dispersive X-ray spectroscopy (EDS) under a 200 kV accelerating voltage. The surface elemental composition and valence analysis were performed on X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250Xi). All of the XPS spectra were calibrated to the C 1s peak of adventitious carbon (284.8 eV). The electron spin resonance (ESR) spectra were carried out using a Bruker ESP–300E ESR spectrometer at room temperature (Bruker, Germany). UV-vis absorption spectra were obtained on a UV-8000PC spectrophotometer (Puxi, China).

Experiment name	C _{TMB} (mM)	<i>С_{Н2}0</i> 2(mM)	t (℃)	рН
pH effect	1	250	30	3-8
Temperature effect	1	250	25-60	4.17
kinetic experiment (1)	0.05-0.75	250	30	4.17
kinetic experiment (2)	1	1-60	30	4.17

 Table S1. Experimental conditions of different experiment

Table S2. Kinetic parameters (K_m and V_{max}) of various nanozymes.

Nanozymes	K _m /mM		$V_{max}/10^{-8}Ms^{-1}$		Ref.
	ТМВ	H_2O_2	ТМВ	H_2O_2	
Co/Fe-NiO@NF	0.213	12.130	9.360	9.710	This work
HRP	0.434	3.700	10.00	8.710	[1]
Ni-MOF	0.365	2.490	6.530	130.0	[2]
N-doped graphene/ZnFe ₂ O ₄	0.907	115.520	9.710	7.440	[3]
Au/CeO ₂ CSNPs	0.290	44.69	3.900	2.230	[4]
Cu NCs	0.648	29.16	5.96	4.22	[5]
Cu-Ag/rGO	0.85	20.93	3.82	6.23	[6]

Detection Method	Sensor Type	Linear Range	Detection Limit	Ref.
Colorimetry	Ce/ZnCo ₂ O ₄	0.2-1 mM	175 μM	[7]
Colorimetry	GO-FeTPyP	0.02-0.5 mM	72 μM	[8]
Colorimetry	GA-AgNP	1-8 mM	340 μM	[9]
Colorimetry	Co ₃ O ₄ /BiPc(OC ₈ H ₉) ₁₂	3-20 mM	350 μM	[10]
Colorimetry	CDs@ZIF-8	0.1-1 mM	3.6 μM	[11]
Electrochemical method	MnO ₂ -NWs@Au- NPs/GF	0.01-9.5 mM	1.9 μΜ	[12]
Electrochemical method	ITO-rGO-AuNPs	0.025-3 mM	6.5 μΜ	[13]
Fluorescence	MoO _x QDs@Co/Zn- MOFs	2-150 μM	32.6 pmol	[14]
High performance liquid chromatography			0.1 μΜ	[15]
Colorimetry	Co/Fe-NiO@NF	0.2-4 mM	32.9 μM	This work

Table S3. Various methods for H_2O_2 detection.

Figure S1. XRD spectra of the sample before calcination.

Figure S2. Survey XPS spectra of Co/Fe-NiO@NF

Figure S3. Easy separation of Co/Fe-NiO@NF by tweezers (a) and magnet (b).

References

(1) L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nanotechnol., 2007, **2(9)**, 577-583. DOI: 10.1038/nnano.2007.260.

(2) J. Chen, Y. Shu, H. Li, Q. Xu, X. Hu, Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H₂O₂, Talanta, 2018, **189**, 254-261. DOI: 10.1016/j.talanta.2018.06.075. (3) D. Navadeepthy, A. Rebekah, C. Viswanathan, N. Ponpandan, N-doped Graphene/ZnFe₂O₄: A novel nanocomposite for intrinsic peroxidase based sensing of H₂O₂, Mater. Res. Bull., 2017, **95**, 1-8. DOI: 10.1016/j.materresbull.2017.06.033.

(4) S. Bhagat, N. V. Srikanth Vallabani, V. Shutthanandan, M. Bowden, A. S. Karakoti, S. Singh, Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon, J. Colloid Interf. Sci., 2018, **513**, 831-842. DOI: 10.1016/j.jcis.2017.11.064.

(5) L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed, G. Xu, Copper nanoclusters as peroxidase mimetics and their applications to H_2O_2 and glucose detection, Anal. Chim. Acta, 2013, **762**, 83-86. DOI: 10.1016/j.aca.2012.11.056.

(6) G. Darabdhara, B. Sharma, M. R. Das, R. Boukherroub, S. Szunerits, Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection, Sensor. Actuat. B-Chem., 2017, **238**, 842-851. DOI: 10.1016/j.snb.2016.07.106.

(7) D. Yin, H. Yang, S. Wang, Z Yang, Q. Liu, X. Zhang, X. Zhang, Ce-doped $ZnCo_2O_4$ nanospheres: Synthesis, double enzyme-like performances, catalytic mechanism and fast colorimetric determination for glutathione, Colloid. Surface. A, 2020, **607**, 125466. DOI: 10.1016/j.colsurfa.2020.125466.

(8) C. Socaci, F. Pogacean, A. R. Biris, M. Coros, M. C. Rosu, L. Magerusan, G. Katona, S. Pruneanu, Graphene oxide vs. Reduced graphene oxide as carbon support in porphyrin peroxidase biomimetic nanomaterials, Talanta, 2016, **148**, 511-517. DOI: 10.1016/j.talanta.2015.11.023.

7

(9) V. Doan, V. Nguyen, T. Nguyen, A. Nguyen, T. Nguyen, Highly sensitive and low-cost colourimetric detection of glucose and ascorbic acid based on silver nanozyme biosynthesized by Gleditsia australis fruit, Spectrochim. acta. A, 2022, **268**, 120709. DOI: 10.1016/j.saa.2021.120709.

(10) X. Kong, R. Yang, Y. Li, Y. Wei, Y. Sun, H. Lyu, D. Yin, X. Zhu, G. Lu, Q. Liu, Co_3O_4 -binuclear phthalocyanine nanocomposites with enhanced peroxidase-like activity for sensitive detection of glutathione, Colloid. Surface. A, 2021, **615**, 126261. DOI: 10.1016/j.colsurfa.2021.126261.

(11) Y. Wang, X. Liu, M. Wang, X. Wang, W. Ma, J. Li, Facile synthesis of CDs@ZIF-8 nanocomposites as excellent peroxidase mimics for colorimetric detection of H_2O_2 and glutathione, Sensor. Actuat. B-Chem., 2021, **329**, 129115. DOI: 10.1016/j.snb.2020.129115.

(12) L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep., 2009, **473**, 51–87, https://doi.org/10.1016/j. physrep.2009.02.003.

(13) B. Patella, M. Buscetta, S. Di Vincenzo, M. Ferraro, G. Aiello, C. Sunseri, E. Pace, R. Inguanta, C. Cipollina, Electrochemical sensor based on rGO/Au nanoparticles for monitoring H₂O₂ released by human macrophages, *Sensor. Actuat. B-Chem.*, 2021, **327**, 128901. DOI: 10.1016/j.snb.2020.128901.

(14) Y. Shi, Q. Wu, W. Li, L. Lin, F. Qu, C. Shen, Y. Wei, P. Nie, Y. He, X. Feng, Ultra-sensitive detection of hydrogen peroxide and levofloxacin using a dual-functional fluorescent probe, *J. Hazard. Mater.*, 2022, **432**, 128605. DOI: 10.1016/j.jhazmat.2022.128605.

(15) H. Yue, X. Bu, M. H. Huang, J. Young, T. Raglione, Quantitative determination of trace levels of hydrogen peroxide in crospovidone and a pharmaceutical product using high

8

performance liquid chromatography with coulometric detection, Int. J. Pharm., 2009, 375(1-

2), 33–40. DOI: 10.1016/j.ijpharm.2009.03.027.