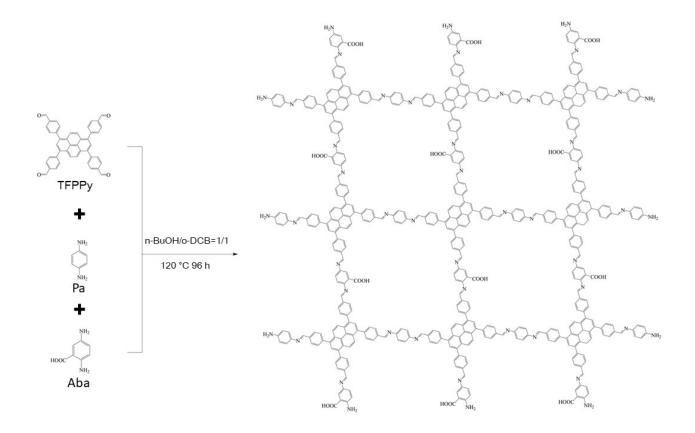
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Data for:

Rational design of COF-MOF composites for ratiometric fluorescence

detection of phosphate

Yun-Jie Yu,⁺ Wei Li,[‡] Shi-Bin Ren,[‡] Xian-Jing Zhou,⁺ De-Man Han^{*,+,‡}


⁺ Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of

Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China

^{*} School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000 Zhejiang, China

*Corresponding author: De-Man Han.

E-mail address: hdm@tzc.edu.cn

Fig. S1. Illustration for the synthesis of COF via the condensation reaction between TFPPy, Pa and Aba.

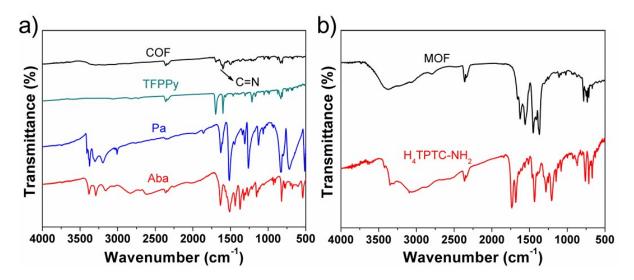


Fig. S2. (a) FT-IR spectrum of COF, TFPPy, Pa and Aba; (b) FT-IR spectrum of H_4 TPTC-NH₂ and MOF.

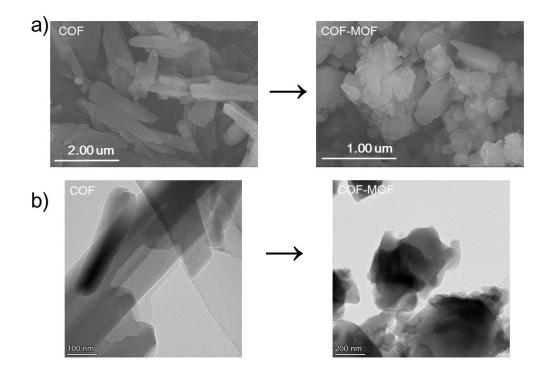


Fig. S3. SEM and TEM images of COF and COF-MOF.

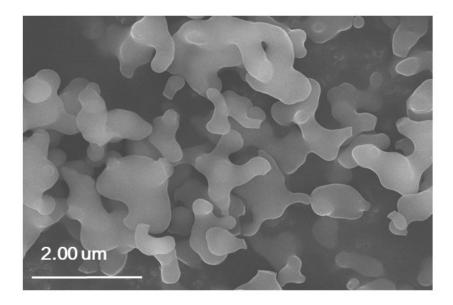


Fig. S4. SEM images of MOF.

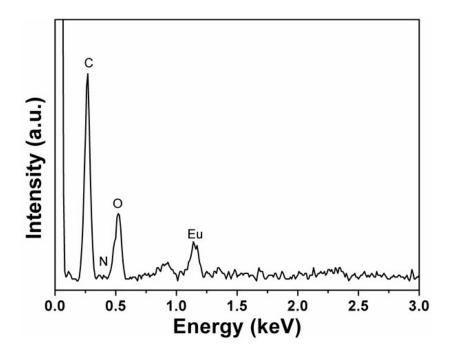


Fig. S5. The EDX element analysis of COF-MOF.

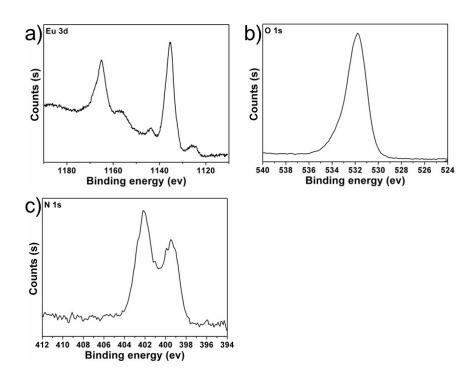


Fig. S6. The XPS spectrum of Eu 3d (a), O 1s (b) and N 1s (c) for COF-MOF.

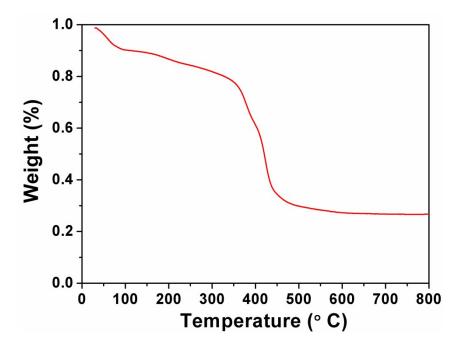


Fig. S7 TGA spectrum of COF-MOF.

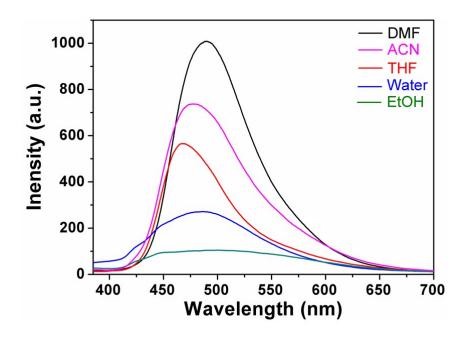


Fig. S8. The fluorescence spectrum of COF-MOF in different solvent.

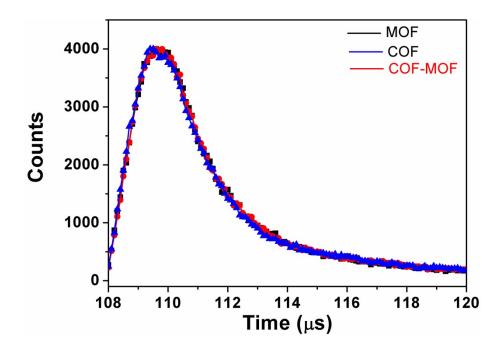


Fig. S9. The fluorescence lifetime of COF, MOF and COF-MOF.

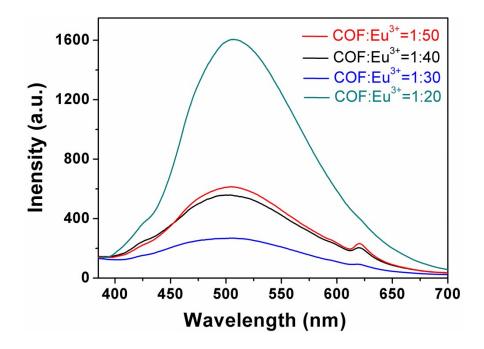


Fig. S10. The fluorescence of COF-MOF with different mass ratio of COF/ Eu^{3+} .

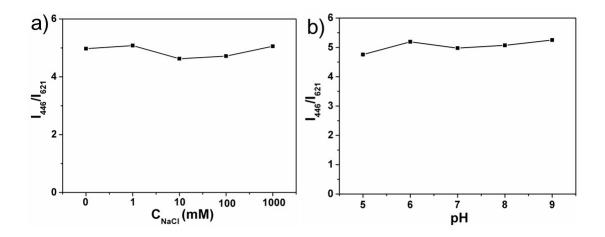


Fig. S11 The fluorescence stability of COF-MOF in different concentration of NaCl (a) and pH (b).

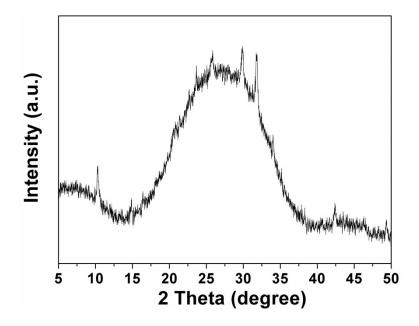


Fig. S12. The XRD of COF-MOF after phosphate addition.

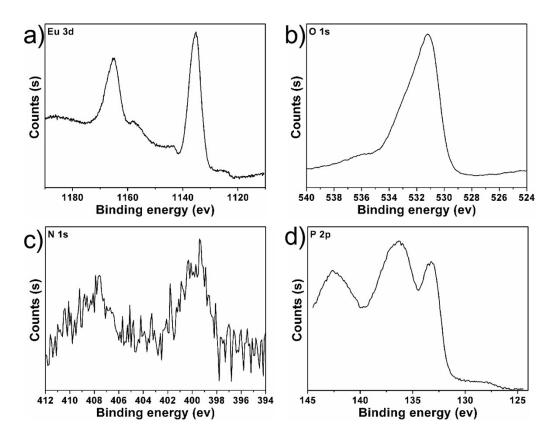


Fig. S13. The XPS spectrum of Eu 3d (a), O 1s (b), N 1s (c) and P 2p (d) for COF-MOF after phosphate addition.

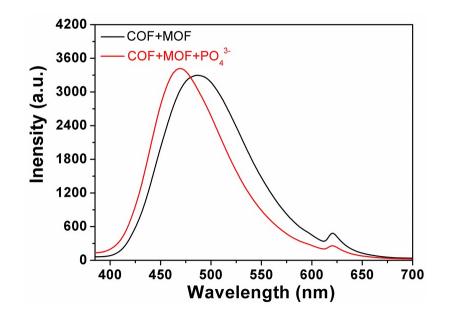


Fig. S14. The fluorescence spectrum of COF + MOF before or upon 100 μ M phosphate addition.

Table S1

Comparison of analytical performance for phosphate detection by our strategy and those reported in literature

Method	Detection Limit (µM)	Strategy	Ref.
Fluorescent	0.39	A Terbium(III)-Complex-Based On–Off Fluorescent Chemosensor for Phosphate Anions in Aqueous Solution and Its Application in Molecular Logic Gates	1
Fluorescent	2	MOF@COFs with Strong Multiemission for Differentiation and Ratiometric Fluorescence Detection	2
Fluorescent	10	A Water-Stable Lanthanide-organic Framework as a Recyclable Luminescent Probe for Detecting Pollutant Phosphorus Anions	3
Fluorescent	1	A Postsynthetically Modified MOF Hybrid as a Ratiometric Fluorescent Sensor for Anion Recognition and Detection	4
Fluorescent	0.61	Imine-Linked Covalent Organic Framework with a Naphthalene Moiety as a Sensitive Phosphate Ion Sensing	5
Fluorescent	1.25	Metal–Organic Frameworks with Inherent Recognition Sites for Selective Phosphate Sensing through Their Coordination-Induced Fluorescence Enhancement Effect	6
Fluorescent	0.81	Phosphate Ion Targeted Colorimetric and Fluorescent Probe and Its Use to Monitor Endogeneous Phosphate Ion in a Hemichannel- Closed Cell	7
Fluorescent	0.95	COF-MOF based ratiometric fluorescence detection of phosphate	This work

Samples	Spiked phosphate /µM	Concentration found (mean $\pm s$, $n = 3$)	PBS ^a method (mean $\pm s$, $n = 3$)
Tap water	0	Not detected	
	50 µM	$49.2\pm1.2~\mu M$	
	25 μΜ	$24.8\pm0.5~\mu M$	
Lake water	0	Not detected	
	50 µM	$51.3\pm1.3~\mu M$	
	25 μΜ	$25.4\pm0.7~\mu M$	
Human urine 1	0	$11.66\pm0.22~mM$	$11.78\pm0.18\ mM$
Human urine 2	0	$10.98\pm0.16\ mM$	$11.12\pm0.23\ mM$

 Table S2

 Analytical Results for the Determination of phosphate in water samples.

^a PBS:Phosphomolybdenum blue spectrophotometry

[1] Wang, Y. W; Liu, S. B.; Yang, Y. L.; Wang, P. Z.; Zhang, A. J.; Peng, Y. Terbium(III)-Complex-Based On–Off Fluorescent Chemosensor for Phosphate Anions in Aqueous Solution and Its Application in Molecular Logic Gates. ACS Appl. Mater. Inter. **2015**, *7*, 4415-4422.

[2] Wang, X. Y.; Yin, H. Q.; Yin, X. B. MOF@COFs with Strong Multiemission for Differentiation and Ratiometric Fluorescence Detection. ACS Appl. Mater. Inter. **2020**, 12, 18, 20973-20981.

[3] Xu, H.; Cao, C. S.; Zhao, B. A Water-Stable Lanthanide-organic Framework as a Recyclable
 Luminescent Probe for Detecting Pollutant Phosphorus Anions. Chem. Commun. 2015, 51, 10280 10283.

[4] Lian, X.; Yan, B. A Postsynthetically Modified MOF Hybrid as a Ratiometric Fluorescent Sensor for Anion Recognition and Detection. Dalton. Trans. **2016**, 45, 18668-18675.

[5] Afshari, M.; Dinari, M.; Farrokhpour, H.; Zamora, F. Covalent Organic Framework with a Naphthalene Moiety as a Sensitive Phosphate Ion Sensing. ACS Appl. Mater. Inter. **2022**, 14, 19, 22398-22406.

[6] Yang, M.; Dai, Y.; Zhu, X. Y.; Wang, Z.; Li, Y. S.; Zhuang, Q. X.; Shi, J. L.; Gu, J. L. Metal– Organic Frameworks with Inherent Recognition Sites for Selective Phosphate Sensing through Their Coordination-Induced Fluorescence Enhancement Effect. J. Mater. Chem. A **2015**, 3, 7445-

7452.

[7] Guo, L. E; Zhang, J. F.; Liu, X. Y.; Zhang, L. M.; Zhang, H. L.; Chen, J. H.; Xie, X. G.; Zhou,
Y.; Luo, K. J.; Yoon, J. Y. Phosphate Ion Targeted Colorimetric and Fluorescent Probe and Its Use
to Monitor Endogeneous Phosphate Ion in a Hemichannel-Closed Cell. Anal. Chem. 2015, 87, 2,
1196-1201.