Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

Covalent Organic Frameworks with Triazine Units for Iodine

Capture via Weak Molecular Interaction

Qianyuan Niu,^a Qingxue Cui,^a Xutong Meng,^a Pei Zhang,^a Yining Zhou,^a Hao Fu,^a Baiwei Ma,^{a,*} Na Qin^{a,*} and Lipeng Zhai^a

^aHenan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research,

Zhongyuan University of Technology, Zhengzhou, 450007 P. R. China.

Fig. S1. FT IR spectra of (a) T-COF-1 and (b) T-COF-2.

Fig. S2. FE SEM images of (a) (b) T-COF-1 and (c) (d) T-COF-2.

Fig. S3. PXRD pattens of (a) T-COF-1 and (b) T-COF-2 under different conditions.

Fig. S4. FT IR pattens of (a) T-COF-1 and (b) T-COF-2 under different conditions.

Fig. S5. The images of COFs before and after iodine capture: (a) T-COF-1 and (b) T-COF-2.

Fig. S6. The pseudo-first-order kinetic model of (c) T-COF-1 and (d) T-COF-2.

Fig. S7. Retention ability of (a) T-COF-1 and (b) T-COF-2.

Fig. S8. Raman spectra of (a) T-COF-1 and (b) T-COF-2.

Fig. S9. Iodine uptake of T-COF-2 (15 mg) in hexane (iodine: 1.5 mmol L⁻¹, 3 mL).

Fig. S10. Recycle ability of (a) T-COF-1 and (b) T-COF-2.

Fig. S11. FT IR spectra of (a) T-COF-1 and (b) T-COF-2.

Fig. S12. PXRD patterns of regenerated (a) T-COF-1 and (b) T-COF-2.

Fig. S13. FE SEM images of regenerated (a) T-COF-1 and (b) T-COF-2.

		C (%)	H (%)	N (%)
T-COF-1	Calcd.	86.79	4.40	8.81
	Found	86.01	4.92	8.16
T-COF-2	Calcd.	82.76	4.08	13.16
	Found	81.23	4.52	13.06

 Table S1. Elemental analysis of T-COF-1 and T-COF-2.

Samples	Temperature (°C)	I ₂ uptake (g g ⁻¹)	Rate constant	Ref.
T-COF-1	77	4.29		This
T-COF-2		4.72		work
TPB-DMTP COF		6.26	0.13	
TTA-TTB COF	75	4.95	0.14	S1
ETTA-TPA COF		4.79	0.12	
M-COF	77	4.56	-	S2
TPT-DHBD-COF	75	5.43	0.14	S3
TPT-Azine-COF	-	2.19	-	S4
SOF	-	4.46	-	S5
AzoPPN	77	2.90	0.18	S6
NTP	75	1.80	0.11	S7
NiP-CMP	75	2.02	0.17	S8

 Table S2. Iodine sorption capacity compared with other materials.

References

- S1. P. Wang, Q. Xu, Z. Li, W. Jiang, Q. Jiang, D. Jiang, Adv. Mater., 2018, 30, 1801991.
- W. Zhang, X. Yang, L. Zhai, Z. Chen, Q. Sun, X. Luo, J. Wan, R. Nie, Z. Li, *Mater. Lett.*, 2021, **304**, 130657.
- S3. X. Guo, Y. Tian, M. Zhang, Y. Li, R. Wen, X. Li, X. Li, Y. Xue, L. Ma, C. Xia, S. Li, *Chem. Mater.*, 2018, **30**, 2299-2308.
- S4. Y. Li, W. Chen, W. Hao, Y. Li, L. Chen, ACS Appl. Nano Mater., 2018, 1, 4756.
- S5. S. Song, Y. Shi, N. Liu, F. Liu, ACS Appl. Mater. Interfaces, 2021, 13, 10513-10523.
- S6. L. Ascherl, T. Sick, J. T. Margraf, S. H. Lapidus, M. Calik, C. Hettstedt, K. Karaghiosoff,
- M. Döblinger, T. Clark, K. W. Chapman, F. Auras, T. Bein, Nat. Chem., 2016, 8, 310.
- S7. H. Ma, J. Chen, L. Tan, J. Bu, Y. Zhu, B. Tan, C. Zhang, ACS Macro Lett., 2016, 5, 1039.
- S8. S. A, Y. Zhang, Z. Li, H. Xia, M. Xue, X. Liu, Y. Mu, Chem. Comm., 2014, 50, 8495.