Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information File

Understanding the activity of single atom catalysts for CO₂ reduction to C₂ products: A high throughput computational screening

Afshana Hassan^a and Manzoor Ahmad Dar^a*

^aDepartment of Chemistry, Islamic University of Science and Technology, Kashmir 192122, India

Corresponding author: manzoor.dar@islamicuniversity.edu.in

Table of contents

1. Fig. S1. Reaction pathways for CO ₂ reduction to C_2H_4 and C_2H_5OH on (a) Mn@C ₂ N, (b) Co@C ₂ N, (c) Tc@C ₂ N, (d) Rh@C ₂ N, (e) Pd@C ₂ N, (f) Re@C ₂ N, (g) Os@C ₂ N and (h) Ir@C ₂ N catalysts2
2. Fig. S2. Reaction pathways for CO ₂ reduction on (a) $Sc@C_2N$, (b) $Ti@C_2N$, (c) $V@C_2N$, (d) $Ni@C_2N$, (e) $Y@C_2N$, (f) $Zr@C_2N$, (g) $Nb@C_2N$, (h) $Mo@C_2N$, (i) $Ru@C_2N$, (j) $Ag@C_2N$, (k) $La@C_2N$, (l) $Hf@C_2N$, (m) $Ta@C_2N$, (n) $W@C_2N$, (o) $Pt@C_2N$ and (p) $Au@C_2N$ catalysts
3. Fig. S3. Energy barrier for hydrogenating *COCHO to *CCO ($Cr@C_2N$ and $Fe@C_2N$) and *COOH to *CO ($Cu@C_2N$)
4. Fig. S4. AIMD plots for Cr@C ₂ N, Fe@C ₂ N and Cu@C ₂ N5
5. Fig. S5. Adsorption free energies of CO ₂ RR intermediates versus $\Delta G_{(*COCH_2O)}$
6. Fig. S6. Predicted free energy change for each reaction step7
7. Table S1. Adsorption free energies of CO ₂ reduction intermediates SACs supported on g-C ₂ N monolayer
8. Table S2. The linear correlation $y = a^*x + b$ between adsorption free energy of intermediate species and that of *COCH ₂ O
9. Table S3. Predicted limiting potential values for Cr, Mn, Fe, Co, Cu, Tc, Rh, Pd, Re, Os and Ir based catalyst

Fig. S1 The reaction Pathways for CO₂ reduction to C₂H₄ and C₂H₅OH on (a) $Mn@C_2N$, (b) Co $@C_2N$, (c) Tc $@C_2N$, (d) Rh $@C_2N$, (e) Pd $@C_2N$, (f) Re $@C_2N$, (g) Os $@C_2N$ and (h) Ir $@C_2N$ catalysts. The most favourable pathways are highlighted in blue colour.

Fig. S2 The reaction Pathways for CO₂ reduction to C₂H₄ and C₂H₅OH on (a) Sc @C₂N, (b) Ti @C₂N, (c) V @C₂N, (d) Ni @C₂N, (e) Y @C₂N, (f) Zr @C₂N, (g) Nb @C₂N (h) Mo @C₂N, (i) Ru @C₂N, (j) Ag @C₂N, (k) La @C₂N, (l) Hf @C₂N, (m) Ta @C₂N, (n) W @C₂N, (o) Pt @C₂N and (p) Au @C₂N catalysts.

Fig. S3. Energy barrier for hydrogenating *COCHO to *CCO ($Cr@C_2N$ and $Fe@C_2N$) and *COOH to *CO ($Cu@C_2N$).

Fig. S4. Variation of potential energy with respect to the AIMD simulation time for a period of 10 picoseconds obtained using of NVT ensemble and Nose-Hoover thermostat for (a) $Cr@C_2N$, (b) $Fe@C_2N$ and (c) $Cu@C_2N$ catalysts at 600 K.

Fig. S5. Correlation between adsorption free energies of CO_2RR intermediates versus $\Delta G(*COCH_2O)$.

Fig. S6. Free energy change for each reaction step, predicted based on linear correlation between adsorption free energy of intermediates and $\Delta G_{(*COCH_2O)}$.

Catalyst	*COOH	*CO	*CHO	*COH	*COCO	*COCHO	*COCOH
Sc	-0.78	2.47	3.86	1.91	1.48	1.52	1.87
Ti	-0.67	2.49	2.95	1.68	0.81	1.57	1.59
V	-0.36	2.51	0.01	2.05	-1.54	2.02	1.95
Cr	0.09	2.23	3.56	2.50	1.37	2.12	2.42
Mn	-0.06	2.04	3.62	2.70	2.06	2.25	2.74
Fe	0.25	1.54	3.32	2.24	1.09	1.85	2.36
Со	-0.16	1.27	3.14	2.08	0.56	1.62	2.16
Ni	0.21	1.61	3.58	2.54	1.26	2.13	2.60
Cu	0.13	1.62	4.24	2.65	1.47	2.21	2.79
Y	-0.81	2.51	3.90	1.79	1.43	1.87	1.82
Zr	-1.18	2.15	2.52	1.25	0.39	1.25	1.12
Nb	-0.95	2.33	1.62	1.17	0.30	1.08	0.98
Мо	-0.73	2.68	2.14	1.53	0.10	1.27	1.29
Tc	-0.86	0.75	2.15	1.46	-0.67	1.13	1.34
Ru	-0.98	3.08	2.58	1.25	-0.46	0.97	1.69
Rh	-0.10	2.37	3.50	2.01	0.76	1.78	2.50
Pd	0.22	2.29	3.49	2.21	1.20	2.03	2.85
Ag	1.06	-0.87	5.24	3.45	2.82	3.24	3.74
La	-0.32	2.78	4.96	2.36	1.86	1.83	2.18
Hf	-1.42	2.09	3.55	1.03	0.08	1.09	1.00
Та	-1.31	2.21	3.78	0.79	-0.08	0.76	0.64
W	-1.16	2.42	4.16	3.14	-0.58	0.85	0.72
Re	-1.22	1.17	-0.25	1.07	-1.83	-0.40	-0.53
Os	-1.09	0.35	4.22	2.00	-1.12	0.78	1.33
Ir	-0.57	1.05	2.99	1.57	0.01	1.39	2.00
Pt	-0.07	4.99	2.76	2.08	0.53	0.01	2.30
Au	0.30	2.62	4.20	2.58	2.19	2.18	3.06

Table S1. Adsorption free energies of CO_2 reduction intermediates on SACs supported on g-C₂N monolayer.

Catalyst	*COCH ₂ O	*СОНСОН	*CCO	*COHCH ₂ O	*CHCO	*CCOH
Sc	0.49	1.62	4.56	0.52	3.20	4.36
Ti	0.66	1.59	3.44	1.01	2.65	4.53
V	1.08	1.97	3.96	1.19	3.08	4.95
Cr	1.38	2.56	4.65	1.93	3.31	5.30
Mn	1.71	2.88	5.08	2.12	3.26	5.28
Fe	1.71	2.68	4.63	1.94	3.32	5.23
Со	1.46	2.55	4.76	2.14	3.38	5.41
Ni	2.08	3.11	5.71	2.83	3.59	5.64
Cu	2.72	3.53	5.46	3.60	3.85	5.73
Y	0.76	2.67	4.28	1.33	2.66	4.44
Zr	0.03	1.02	3.82	-0.19	2.26	4.09
Nb	0.11	1.04	3.16	0.01	2.61	4.18
Mo	0.51	1.57	3.76	0.55	2.87	4.59
Тс	1.62	3.94	0.01	0.71	2.98	4.65
Ru	0.61	1.97	4.34	1.31	3.11	4.75
Rh	1.52	3.04	5.26	2.33	3.62	5.68
Pd	1.85	3.46	5.76	2.92	3.94	5.96
Ag	3.76	4.18	6.70	4.60	4.70	7.01
La	1.28	3.42	4.87	1.99	3.05	4.91
Hf	-0.35	0.75	2.71	0.17	1.54	3.70
Та	-0.22	0.45	2.77	-0.57	2.27	3.81
W	-0.21	0.72	2.96	-0.25	2.48	4.05
Re	-1.45	-0.53	1.71	-1.49	1.23	2.81
Os	0.04	1.41	3.80	0.63	2.86	4.23
Ir	0.98	0.01	4.695	1.73	3.33	4.96
Pt	1.31	2.77	5.42	2.04	3.72	4.98
Au	2.72	3.74	0.01	3.77	4.34	6.72

Catalyst	*CHOH-CH ₂ O	*CHCOH	*CH ₂ CO	*CHCH ₂ O	*CH ₂ COH	*0
Sc	0.70	3.89	2.82	3.65	2.77	1.87
Ti	0.25	3.11	2.91	2.98	3.08	1.07
V	0.81	3.56	3.11	3.30	3.36	1.84
Cr	0.927	4.04	3.34	3.87	3.90	2.87
Mn	1.47	4.09	3.31	4.77	3.87	3.73
Fe	1.65	3.91	2.95	4.10	3.69	3.57
Со	1.47	3.85	2.68	4.17	3.38	3.73
Ni	2.06	4.30	2.84	4.78	3.91	5.79
Cu	2.55	4.45	3.08	5.77	4.32	6.23
Y	0.87	4.15	2.89	3.93	2.77	2.54
Zr	-0.26	2.51	2.54	2.52	2.23	0.58
Nb	-0.20	2.71	2.31	1.98	1.33	0.86
Mo	0.36	3.09	2.50	2.46	2.57	2.06
Тс	0.39	3.69	2.56	3.09	2.50	2.51
Ru	0.70	3.58	3.12	3.55	2.94	3.40
Rh	1.63	4.41	3.03	4.25	3.74	4.41
Pd	2.19	4.49	2.94	4.76	4.00	5.24
Ag	3.46	5.04	3.51	6.96	5.05	6.78
La	0.23	4.59	2.90	4.41	4.41	2.94
Hf	-0.72	2.23	2.43	2.07	2.48	0.18
Та	-0.71	2.14	2.05	1.41	1.98	0.48
W	-0.46	1.39	2.12	1.46	1.97	1.09
Re	-1.71	1.08	0.01	0.22	0.72	-0.15
Os	-0.66	3.08	0.01	2.87	2.41	2.81
Ir	1.00	4.02	2.94	3.55	3.36	3.62
Pt	1.05	3.85	2.43	3.81	2.92	4.22
Au	2.63	4.88	3.35	5.82	4.65	5.64

Catalyst	*CH ₂ CHOH	*CH ₂ CH ₂ O	*CH ₃ CH ₂ O	*CH ₂ CH ₂ OH	*OH	*C2H5OH	*H ₂ O
Sc	1.96	1.88	-0.20	1.52	0.68	0.75	1.70
Ti	1.61	1.44	0.29	1.61	1.03	0.94	1.83
V	1.99	1.99	0.95	2.04	1.67	1.19	2.08
Cr	2.29	2.27	1.21	3.45	2.04	1.37	2.24
Mn	2.55	2.64	1.39	2.46	2.18	1.24	2.06
Fe	2.59	2.92	1.47	2.69	2.29	1.31	2.16
Co	2.66	2.81	1.79	2.68	2.55	1.26	1.65
Ni	2.95	3.28	2.02	2.95	2.75	3.55	2.41
Cu	3.53	3.90	2.25	3.13	3.19	1.77	2.32
Y	2.21	2.09	-0.11	1.48	0.69	1.61	1.71
Zr	0.96	0.88	-0.28	1.04	0.01	2.20	1.73
Nb	1.11	1.01	0.36	1.45	1.26	1.76	2.13
Mo	1.63	1.57	1.14	1.64	1.91	2.02	2.34
Tc	2.35	1.76	1.38	2.05	2.27	1.95	2.44
Ru	2.65	2.01	2.76	1.94	3.33	0.64	2.43
Rh	3.22	3.00	2.16	3.76	3.10	0.70	2.66
Pd	3.13	3.35	2.51	2.67	3.53	1.25	2.46
Ag	4.9	4.81	3.24	3.84	4.32	1.41	2.18
La	2.64	2.19	0.38	1.96	2.54	0.96	1.93
Hf	0.53	1.32	-0.7	0.73	0.16	0.66	1.67
Та	0.52	0.52	-0.10	0.97	0.87	1.11	2.04
W	0.83	0.79	0.47	1.28	1.40	1.28	2.22
Re	0.92	-0.46	-0.77	0.01	0.15	2.56	1.34
Os	2.14	1.48	1.35	1.81	2.30	0.01	1.13
Ir	2.80	2.40	1.65	2.24	2.69	1.74	0.01
Pt	2.33	260	2.15	1.97	3.10	2.00	0.01
Au	3.65	3.69	2.84	3.07	4.09	1.99	2.72

Species	а	b	\mathbb{R}^2
*COOH	0.52	1.00	0.84
*CO	-0.21	2.25	0.05
*СНО	0.55	2.72	0.32
*СОН	0.42	1.52	0.50
*COCO	0.74	-0.18	0.52
*COCHO	0.56	0.97	0.81
*СОСОН	0.77	1.07	0.89
*СОНСОН	1.00	1.19	0.87
*CCO	0.98	3.40	0.87
*COHCH ₂ O	1.23	0.16	0.92
*CHCO	0.63	2.42	0.86
*ССОН	0.79	4.06	0.92
*CHOH-CH ₂ O	1.03	-0.28	0.92
*СНСОН	0.81	2.71	0.79
*CH ₂ CO	0.28	2.49	0.54
*CHCH ₂ O	1.27	2.25	0.91
*CH ₂ COH	0.83	2.26	0.82
*0	1.58	1.31	0.83
*CH ₂ CHOH	0.85	1.36	0.84
*CH ₂ CH ₂ O	0.99	1.12	0.92
*CH ₃ CH ₂ O	0.83	0.30	0.65
*CH ₂ CH ₂ OH	0.73	1.33	0.75
*OH	0.84	1.24	0.67
*C ₂ H ₅ OH	0.04	1.46	0.01
*H ₂ O	0.20	1.85	0.35

Table S2. The linear correlation $y = a^*x + b$ between adsorption free energy of intermediate species and that of *COCH₂O. R² represents the mean square error.

Table S3. Comparison between limiting potential values [in Volts (V)] for Cr, Mn, Fe, Co, Cu, Tc, Rh, Pd, Re, Os and Ir based catalysts predicted using linear correlation between adsorption free energies of different intermediates vs adsorption free energy of $*COCH_2O$ and limiting potentials computed using the free energy pathways.

System	U _L (Predicted)	U _L (Calculated)
Cr	-2.85	-2.23
Mn	-2.93	-2.35
Fe	-2.93	-2.27
Со	-2.87	-2.60
Cu	-3.17	-1.50
Тс	-2.91	-2.70
Rh	-2.88	-2.61
Pd	-2.96	-2.51
Re	-4.30	-2.39
Os	-3.22	-2.46
Ir	-2.76	-2.55

*The predicted and calculated limiting potential is given by the following equation

$$U_{L} = \frac{-\Delta G_{Max.}}{e}$$